Reply
 
LinkBack Thread Tools Search this Thread Display Modes
  #1   Report Post  
Old 02-11-2003, 04:02 AM
JNJ
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

(This I have to admit is surprisingly pleasant to hear when considering just
how bass ackwards most people here are. Hopefully they DO realize the bats
are migrating OUT of the area for the cold season. JNJ)

************************************************** **************
Bats Brought In To Battle Mosquitos
LAST UPDATE: 10/31/2003 10:51:04 PM

The Anderson Park District is taking unusual measures in the fight against
West Nile. It is bringing in bats, in hopes the winged creatures will gobble
up mosquitos, which are known to carry the virus. This comes after a
mosquito with West Nile was found over the summer in Kellogg Park, leading
the District to cancel their Haunted Hike this year.

Puddles in the park were treated with chemical dunks to kill larvae, and
mosquito magnets were also used to get rid of the adult insects. Seven bat
houses, made by local boy scouts, have been put up in the park. Each one
housing 30 bats, of 11 different species. Park District officials say if the
experiment works, more bat houses will be put up in other parks next fall.

One bat can eat 500 of the insects in just one hour. But there's no need to
be afraid. Park officials say that bats' reputation of sucking blood and
flying into human hair are simply myths. They only fly close to people if
their exceptional radar and hearing show a bug nearby to eat.


  #2   Report Post  
Old 02-11-2003, 02:02 PM
Salty Thumb
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

"JNJ" wrote in
:

(This I have to admit is surprisingly pleasant to hear when
considering just how bass ackwards most people here are. Hopefully
they DO realize the bats are migrating OUT of the area for the cold
season. JNJ)

************************************************** **************
Bats Brought In To Battle Mosquitos
LAST UPDATE: 10/31/2003 10:51:04 PM

The Anderson Park District is taking unusual measures in the fight
against West Nile. It is bringing in bats, in hopes the winged
creatures will gobble up mosquitos, which are known to carry the
virus. This comes after a mosquito with West Nile was found over the
summer in Kellogg Park, leading the District to cancel their Haunted
Hike this year.

Puddles in the park were treated with chemical dunks to kill larvae,
and mosquito magnets were also used to get rid of the adult insects.
Seven bat houses, made by local boy scouts, have been put up in the
park. Each one housing 30 bats, of 11 different species. Park District
officials say if the experiment works, more bat houses will be put up
in other parks next fall.

One bat can eat 500 of the insects in just one hour. But there's no
need to be afraid. Park officials say that bats' reputation of sucking
blood and flying into human hair are simply myths. They only fly close
to people if their exceptional radar and hearing show a bug nearby to
eat.



Does anybody else think this isn't going to work? Somebody in the group
mentioned that bats (or maybe it was purple martins) don't really eat
mosquitoes, and comparing the nutritional value of a scrawny mosquito to a
nice fat juicy night flying moth or bettle, I'm inclined to believe.
Mosquitoes and bats also seem to (at least stereotypically) occupy
disparate habitats. So unless one of the species is Fjordhamper's
Skeetereater Swamp-cave bat, it seems like the experiment is doomed to
failure (at least mosquito-wise). I wonder if there even is a bat with
ultrasound of sufficent resolution to distinguish a mosquito. Worst case
is if the mosquitoes start infecting the bats and the bats become vectors
for West Nile. (Don't know if that's possible, though).

-- ST
  #3   Report Post  
Old 02-11-2003, 05:22 PM
animaux
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

Well, this is silly. Bats like to eat beefy moths and other larger flying
insects. They do eat mosquitoes, but not nearly the amount people'd have you
believe.

Taken from this website:
www.batcon.org


THE LIVES OF Mexican Free-tailed Bats
BY MERLIN D. TUTTLE

AS BATS GO, Mexican freetailed bats (Tadarida brasiliensis) may not be much to
look at; they're drab in color, ranging from dark brown to grey, and they have
the characteristic wrinkled lips that others of their genus share. Some have
described them as looking like little gnomes with an overbite. They get their
name from their tail, which protrudes freely beyond the tail membrane.

Despite their rather plain appearance, these are some of the world's most
intriguing bats. Speedsters of the bat world, they have been clocked flying at
60 miles per hour using tail winds, and at altitudes over 10,000 feet, higher
than any other bat. Free-tails can live in an atmosphere more like another
planet than earth, one that can quickly kill most other creatures, including
humans. And they form colonies larger than any other bat, larger, in fact, than
any warm-blooded animal in the world.

The largest populations of Mexican free-tailed bats live in Central Texas and
Mexico, but they are also common throughout much of western North America,
southward through Central America, and into the arid and semi arid regions of
western and southern South America. They live in many habitats, including urban
areas, and range- from deserts to piñon-juniper woodlands and pine-oak forests.
Although bachelor colonies of free-tails have been found at elevations over
9,000 feet, large nursery colonies tend to prefer relatively dry areas below
5,000 feet. Mexican free-tails typically live in caves, abandoned mines, or
tunnels, and also roost in buildings, under bridges, in rock shelters, in hollow
trees, and in cliff-face crevices.

Mexican free-tailed bats are also known as "guano bats" for the prodigious
quantities of droppings that they produce. Extraction of guano for use as
natural fertilizer was once big business, and some is still sold commercially.
From 1903 to 1923, at least 100,000 tons were removed from Carlsbad Caverns
alone and sold to fruit growers in California. According to Charles Campbell,
Bracken and Frio caves in Central Texas on average each produced 75 to 80 tons
annually in the early 1900s. Officials of the Southern Pacific Railroad
estimated that, early this century, they annually transported 65 carloads of
30,000 pounds each from Texas, making bat guano the state's largest mineral
export before oil. Bracken Cave, now owned and protected by BCI, was still
producing from 80 to 85 tons per year in the late 1980s.

Each free-tail cave is also a potential treasure trove for biotechnologists.
Microbiologist Bernie Steele examined guano from Bracken Cave, finding that a
single ounce contains billions of bacteria. He concluded that the cave contains
thousands of species of bacteria, many of which may live nowhere else, and most
of which we know nothing about. Species he identified produce enzymes useful in
detoxifying industrial wastes, producing natural insecticides, improving
detergents, and converting waste byproducts into alcohol. A large proportion are
also potential sources of new antibiotics. Stratified guano deposits in
free-tail bat caves have also been used to monitor environmental pollution and
to investigate prehistoric climatic changes.
Free-tailed bats have supported several American war efforts as well. When
Confederacy ports were blockaded in the latter part of 1863, a gun powder
factory was established near San Antonio. The powder's most valuable ingredient,
saltpeter, was made from local bat guano. During World War 11, major free-tailed
bat caves near San Antonio were carefully guarded during top-secret research
coded "Project X-Ray."* The U.S. Air Force hoped to use bats as carriers of
small incendiary bombs that would be dropped on Japan. The project began to lose
favor when escaped bat bombardiers set fire to air base barracks and a general's
car. After being passed on to the Navy, and finally the Marine Corps, the
project was canceled.

WHILE MOST PEOPLE are unaware of the presence of these bats in their area,
Mexican free-tails are very much a part of life in Central Texas, where the
largest populations in the United States make their summer homes. These huge
colonies, several numbering in the millions each, are where mothers congregate
to give birth. The importance of these nursery sites is enormous; bats born here
help replenish colonies throughout much of the Southwest and other areas.

Bats begin arriving in Central Texas in late February, having migrated from
overwintering sites in Mexico. Active year-round, free-tails do not hibernate.
just before their northward migration, they mate. Although young males
apparently do not reach sexual maturity until their second year, females as
young as a year old have been found pregnant.

By summer, male and female free-tails will have divided into bachelor and
nursery colonies. Bachelor groups are relatively small, consisting of dozens to
hundreds of individuals, but can number 100,000 or more. In contrast, most
nursery colonies are large, numbering from the hundreds of thousands to
millions. Bracken Cave is home to some 20 million free-tailed bats, a population
that almost doubles when the bats give birth. This is the largest known bat
colony in the world.

Typically, each female produces just one young, and virtually all give birth
during a brief span of time, peaking between the first and third weeks of June.
Birth periods may vary from year to year since weather differences can affect
the length of gestation. Newborn young, called pups, weigh nearly a quarter of
their mother's weight and are often more than half as long.

Mothers give birth while clinging to the roost with both thumbs and one or both
feet. Babies are born naked, often with their eyes open. As soon as the baby is
born, the mother carefully cleans and nurses it. For up to an hour, the newborn
remains attached to its mother by the umbilical cord, safeguarding against falls
and allowing time to learn one another's scent and voice before becoming
separated.

Eventually, the mother pulls away to dislodge the placenta, which remains
attached to the baby until it dries and falls off a day or two later. Pups have
an instinctual tenacious clinging response, using their large feet and thumbs to
hold on to walls and their tiny incisor teeth to cling to mothers or other bats.
Richard Davis reported during his research that when a single baby was removed
from a cave wall, as many as 15 could be pulled off as each clung to the next.

Each cave appears to have favored areas where young are deposited year after
year. Gary McCracken and Mary Gustin, who conducted extensive research on the
huge nursery colonies of Central Texas, found average roosting densities of 400
pups per square foot and sometimes as many as 500. As the thousands of pups
squeak, jostle, and crawl over one another, the cave walls are alive with
constant motion and sound.

With so much confusion, it had long been believed that mothers nursed the first
pup they found. But McCracken postulated just the opposite. Using sophisticated
genetic analysis of mothers with nursing young, he documented that nursing is
not random. He and Gustin then used specially marked mother and young pairs,
monitoring them with nightviewing devices attached to video cameras, to show
that each mother finds and nurses her own pup multiple times daily.

They found that mothers roost apart in adult clusters, remembering the
approximate locations of their pups. Since pups may move from a few inches to
over a yard between feedings, locating them among the thousands of others is a
remarkable feat. Mothers and pups recognize each other's unique voices at least
three feet away and move toward one other despite the incredible confusion of
calls emanating from countless thousands of other bats. Multiple landings are
typically required to find a pup, each bracketing its location in a manner
suggesting that a mother is triangulating her pup's voice. Finding her young can
take as little as 12 seconds to nearly 10 minutes. She most commonly feeds her
pup before she goes out to feed and again when she returns in the morning.

Final recognition is by scent, though it remains to be discovered whether the
scent is placed on the pup from glands on the mother's face, or whether each pup
has its own unique odor. A successful reunion ends with a mother touching the
top of her pup's head with her muzzle, apparently smelling and exchanging
vocalizations with it. Such exchanges can last for a minute or more before the
mother raises her folded wing and nudges the pup toward one of her breasts.

Over a 24-hour period, she may produce as much as a quarter of her own body
weight in milk. Young free-tails grow rapidly, benefitting from prodigious
quantities of this extremely rich
milk. They reach adult mass and learn to fly when four to five weeks old and are
weaned within approximately five to six weeks.

On its first attempt at flight, a young free-tail must avoid several mid-air
collisions per second, relying on an as yet untested navigation system in a dark
cave. Although amazingly few serious collisions occur, those that do can break
wings or ground a bat long enough to be attacked by swarms of dermestid beetles
and their larva that live on the floors of most free-tailed bat caves. As with
other bats, the heaviest mortality probably occurs in the first year, perhaps as
much as 50 percent.

Predation at entrances to nursery caves increases dramatically as the young bats
learn to fly. Avian predators are many, with red-tailed hawks and owls the most
common, catching flying bats during emergence and occasionally entering caves to
catch those roosting near entrances. Raccoons, opossums, skunks, and other
mammals also prey on the emerging bats, as well as several types of large
snakes. Given the huge numbers of bats present, such predators likely have
relatively little impact.
WITH COLONIES OF this size, cave temperatures are raised dramatically. In
Bracken Cave, the 20 million mother bats, with a body mass roughly equal to 271
tons, generate an enormous amount of heat. During summer, the cave's temperature
varies only one-sixth as much as the outside; without its bats, Bracken Cave's
walls likely would be less than 68 F. Shared body heat raises average wall
temperatures to 88 F, enabling the bats to maintain cluster temperatures of
100-105 with greatly reduced energy expenditure. As the summer progresses,
however, bats may overheat the cave, forcing large numbers of roosting
individuals to extend and
flap their wings or even take flight to cool down.

With fresh droppings and occasional dead bats falling to the floor in Bracken,
dermestid beetles begin to multiply. By mid-summer, their numbers can be truly
astronomical, causing the floor surface to be in constant seething motion with
dermestids scurrying about looking for food. While young bats falling to the
floor can be skeletonized in minutes, the greatest impact of dermestids comes
from their waste byproducts, which, combined with water vapor, become ammonium
hydroxide.

That free-tailed bats can thrive in this toxic atmosphere may be one of the most
remarkable things about them. Concentrations of ammonia in free-tail caves can
quickly build to levels that are lethal to humans, but the bats survive by
lowering their metabolic rates. Carbon dioxide then accumulates, both in the
bats' blood and in respiratory mucous, directly proportional to increases in
ammonia inhalation. The carbon dioxide neutralizes the ammonia in a buffering
mechanism that protects the lungs.

Although concentrations of just 250 parts per million are highly hazardous to
humans, free-tails can filter out more than 97 percent of the ammonia present
when inhaled at 1,130 parts per million and can still eliminate 73 percent at
over 5,000 parts per million. Levels in their roosts, however, rarely exceed
1,000 parts. Depending on the concentration of ammonia in a freetail roost, the
bats' fur bleaches from its natural dark brown or grey to various shades of
reddish brown. In caves where there are no dermestid beetles, ammonia buildup
does not occur.

EACH NIGHT, colonies leave their roosts to feed, emerging in great, often
spectacular, columns. The most impressive flights occur after the young begin to
emerge with adults in August and September. Many have likened the sound of
thousands and thousands of wings beating the air to that of a white-water river.
Observers often feel a slight breeze created by the bats as they swirl higher
and higher to gain altitude before forming vast undulating columns. Flights from
Bracken Cave are so dense that they can be seen on both airport and weather
radar screens miles away. Emergences of colonies of this size often go on for
hours.

Mexican free-tailed bats are designed for rapid, long-distance travel. Their
exceptionally long, narrow wings are geared for relatively highspeed,
low-maneuverability flight in open areas. Even their short, velvety fur appears
to be an adaptation to reduce drag, and their ear orientation appears to form
airfoils that contribute lift during flight. They have been clocked at average
flight speeds of 25 miles per hour and as high as 47 miles per hour in level
flight, but they can also attain speeds of over 60 miles per hour using tail
winds.

Mexican free-tails normally emerge by sundown. Researcher Timothy Williams
observed Bracken Cave bats with radar, concluding that most feeding occurred
within 528 feet of the ground. He and his research team observed dense,
early-evening concentrations of flying insects within this range. Some
scientists speculate that the bats from Bracken, which have been found flying at
altitudes of 6,600 to 10,000 and more feet, may also be feeding on
concentrations of migratory moths at these heights. And again, they may be
simply catching high tail winds to speed travel to distant locations. Little is
known about how far they travel to feed, but given how high and fast they can
fly, many likely go more than 50 miles in one direction each night.

Free-tails spend more time traveling and feeding each night than most bats, in
part due to competition from large numbers of roost mates. They typically are on
the wing from dusk until dawn. Nursing mothers require at least twice as much
food as nonreproductive bats, especially as their pups near fledging. At such
times, researcher Thomas Kunz found that they may consume their body weight
nightly.

If one assumes that the 20 million nursing mothers at Bracken Cave each eat
their body weight of about 12.3 grams, a single night's consumption easily could
exceed 250 tons of flying insects. Their total ecological and economic impact is
probably enormous. One study conducted near Carlsbad Caverns, New Mexico,
determined that about half of the insects eaten were pests that had fed on
alfalfa and cotton crops, the nearest of which were grown some 40 miles away
along the Pecos River.

Mexican free-tails feed exclusively on flying insects, mostly moths, flying
ants, and beetles, according to samples thus far reported. At the turn of the
century, Charles Campbell, the city bacteriologist for San Antonio, Texas, built
large artificial bat roosts to "control mosquitoes" [BATS, Summer 1989]. Some of
these tower-like structures were occupied by hundreds of thousands of bats, and
many San Antonians swore by his success.

Although Campbell observed bats of unknown identity catching mosquitoes in the
area, there is no documentation that the free-tailed bats from his artificial
roosts actually ate them. Given the high-speed, relatively low-maneuverability
flight of free-tails, it seems unlikely that they would prey extensively on
mosquitoes. Bats, however, are highly opportunistic; the larger, also
fast-flying, hoary bat (Lasiurus cinereus) is known to home in on mosquitoes
when they are abundant.

At dawn, the free-tails return to their roost in an event sometimes said to be
even more spectacular than evening emergences. Richard Davis and his fellow
researchers observed flocks of thousands of bats each, first becoming visible
4,900 to 8,200 feet above Bracken Cave. These high-altitude flocks sometimes
flew past the entrance at speeds of almost 60 miles per hour before turning
around and diving toward the entrance. Beginning about two hours before sunrise,
small groups built up into a continuous diving stream, reaching the greatest
density about 30 minutes before dawn. The first arriving bats came in shallow,
zigzagging glides, but as flight density increased, they formed a continuous
stream of individuals dropping out of the sky into the mouth of the cave. Each
was executing a rapid series of free falls with closed wings, alternating with
abrupt, brief wing openings to control speed and direction. Some groups dropped
nearly 10,000 feet at speeds estimated to exceed 80 miles per hour.

AS SOON AS their young have become proficient flyers, many free-tails leave the
major nursery caves of Central Texas. Once thought to be migratory movements,
these August departures apparently are only local and are correlated with
weather patterns, combined with the stress of overheating and concentrated gas
buildup in their caves. just before bats begin to leave Bracken Cave in early
August, huge clusters roost within inches of direct sunlight in the cave
entrance where fresh air is most available. These factors may also be combined
with attempts to escape parasites that build up on roosts during the nursery
period.

As large numbers of bats leave the cave, they begin appearing in groups of tens
to hundreds of thousands under highway bridges and in almost any other available
place. During 1993, an extremely dry year in Central Texas, so many free-tails
attempted to move under Austin's Congress Avenue Bridge that tens of thousands
were forced to hang out in the open on the concrete pillars. With three-quarters
of a million bats of its own, the bridge is the site of the largest urban colony
of bats in the world.

Additional groups of up to 500,000 each were reported beneath other bridges that
year, and unprecedented numbers moved into parking garages, vacant buildings,
and sports stadiums. But on the night when the first mild cool front passed in
early September, many thousands of free-tails that had been roosting in exposed
places apparently returned to Bracken Cave, which had by then been purged of hot
gases by the cool air. Although the emergence from Bracken had been surprisingly
small for several weeks, it was extraordinarily large on the evening following
the disappearance of the excess bats from the Congress Avenue Bridge, some 60
miles away.

True southward migration of the free-tails appears not to begin until October.
The vast majority of the U.S. population spends the winter mostly in large caves
of northern and Central Mexico. Populations living in California, western
Arizona, Oregon, Nevada, and southwestern Utah apparently live in roughly the
same areas year-round, though seasonal movements among roosts are common. There
are two main migrations. Most of those from the Southwest migrate south along
the Sierra Madre Occidental and the West Coast of Mexico at least as far south
as the state of Sinaloa. Free-tails from the Great Plains typically travel
southward through

Texas and along the Sierra Madre Oriental into eastern and south-central Mexico,
some perhaps farther.

It is clear that major migratory departures in the fall are triggered by the
passage of strong cold fronts from the north. Large departures from Bracken are
typically correlated with passage of extra-strong cold fronts arriving in late
October or early November. Departure dates can vary by several weeks in
different years, according to changing weather patterns. Not all of the bats
leave at once, instead departing in several large groups at different times.

Even among populations that migrate, not all bats leave. Several thousand have
been observed overwintering in Bracken Cave, as well as in concrete crevices
beneath the Congress Avenue Bridge, and in old buildings in Austin. Although
free-tails can enter torpor during inclement winter weather, they are not true
hibernators. During extremely cold weather, many die. It is unknown why some
stay behind.

The longest proven migrations are of bats banded by Bryan Glass in northwestern
Oklahoma and later recovered up to 1,104 miles south in Mexico. The northernmost
area where he believed any of his bats could have overwintered was 480 miles
south in Texas. The original bandings were made at four caves less than 48 miles
apart, between which the bats intermingled. One bat was recaptured at its cave
of birth in Oklahoma after having completed eight migratory circuits. Free-tails
typically return to their home areas, but for these long distance travelers, a
home area may include caves over 100 miles apart.

All available evidence suggests that free-tails typically travel in groups at
all seasons. Richard Davis and fellow researchers recorded a particularly
impressive spring arrival on April 22 at Frio Cave in Texas. At a time when few
other bats had yet arrived, "several million bats hurtled down out of the night
within the space of ten minutes." They arrived at about midnight. Denny
Constantine, another researcher, believed that inexperienced travelers arriving
at night could locate less familiar caves simply by listening for local bats and
following them in. Traveling in groups certainly must increase the odds that
some in the group will know the way.

Davis believed that migratory movements were rapid, crossing Texas in one or a
few nonstop flights, covering at least 290 miles a night. Given knowledge of bat
flight speeds with tail winds, migrating free-tails should be able to cover that
distance in no more than five hours, perhaps substantially less, depending on
wind velocity. Such timing would ensure arrival at stopover caves at optimal
times for following other bats in, if necessary, and allow for unanticipated
delays due to bad weather.

WHILE FREE-TAILED BATS are among the more studied, what remains to be discovered
about them may be even more fascinating than what we already know. Why do so
many fly so high? Are they simply catching tail winds to aid in rapid travel to
distant locations, or are they actually feeding at such high altitudes? How do
they navigate at high altitudes, given the fact that their echolocation signals
reach little more than 100 feet and that cave entrances can be nearly impossible
to see from even a few hundred yards? Bats are known to use celestial cues, but
whatever cues they are relying on must work both night and day, since flights
often arrive in midmorning.

Perhaps the most interesting questions of all involve the composition and role
of flocks. How do they form? Who leads them, and how do they know where they are
going, or how early to leave to ensure arrival at a time when they can maximize
feeding success? Are groups composed of roostmates that hang in close proximity
to each other by day, or do they have some other means of getting together prior
to leaving the cave? With animals as fascinating as these, researchers will be
pondering the answers to such questions for many years.

(Bio)
Merlin D. Tuttle is founder and Executive Director of BCI. Portions of this
article are excerpted from his forthcoming book, Bats of North America, to be
published by University of Texas Press.

(Footnote)
* The project is thoroughly described in Bat Bomb, World War II's Other Secret
Weapon by Jack Couffer, available in the BCI catalogue.



On Sun, 02 Nov 2003 03:48:49 GMT, "JNJ" opined:

(This I have to admit is surprisingly pleasant to hear when considering just
how bass ackwards most people here are. Hopefully they DO realize the bats
are migrating OUT of the area for the cold season. JNJ)

************************************************* ***************
Bats Brought In To Battle Mosquitos
LAST UPDATE: 10/31/2003 10:51:04 PM

The Anderson Park District is taking unusual measures in the fight against
West Nile. It is bringing in bats, in hopes the winged creatures will gobble
up mosquitos, which are known to carry the virus. This comes after a
mosquito with West Nile was found over the summer in Kellogg Park, leading
the District to cancel their Haunted Hike this year.

Puddles in the park were treated with chemical dunks to kill larvae, and
mosquito magnets were also used to get rid of the adult insects. Seven bat
houses, made by local boy scouts, have been put up in the park. Each one
housing 30 bats, of 11 different species. Park District officials say if the
experiment works, more bat houses will be put up in other parks next fall.

One bat can eat 500 of the insects in just one hour. But there's no need to
be afraid. Park officials say that bats' reputation of sucking blood and
flying into human hair are simply myths. They only fly close to people if
their exceptional radar and hearing show a bug nearby to eat.


  #4   Report Post  
Old 02-11-2003, 06:02 PM
Tina Gibson
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

It is not silly - in Canada (and I am sure in the northern US) the brown bat
is a very well known mosquito catcher. Like most mammals - each species or
subspecies has it's own niche. Maybe the mexican free tailed bat eats
mostly moths but there are bats that eat a LOT of mosquitos - just gotta
find the right ones. Even the ones who don't if they're eating that many
insects a night its worth having a few.
BTW puple martins are excellent mosquito catchers too!! Worth putting in a
purple martin house if you ar ein mosquito country - which I definitely am
in.
The bat population in Northwestern ontario has been drastically reduced in
the last 30 yrs by deforestation and there is currently a move to try and
repopulate.
Tina
Check out this link
http://www.cws-scf.ec.gc.ca/hww-fap/...cies=51&lang=e

"animaux" wrote in message
...
Well, this is silly. Bats like to eat beefy moths and other larger flying
insects. They do eat mosquitoes, but not nearly the amount people'd have

you
believe.

Taken from this website:
www.batcon.org


THE LIVES OF Mexican Free-tailed Bats
BY MERLIN D. TUTTLE

AS BATS GO, Mexican freetailed bats (Tadarida brasiliensis) may not be

much to
look at; they're drab in color, ranging from dark brown to grey, and they

have
the characteristic wrinkled lips that others of their genus share. Some

have
described them as looking like little gnomes with an overbite. They get

their
name from their tail, which protrudes freely beyond the tail membrane.

Despite their rather plain appearance, these are some of the world's most
intriguing bats. Speedsters of the bat world, they have been clocked

flying at
60 miles per hour using tail winds, and at altitudes over 10,000 feet,

higher
than any other bat. Free-tails can live in an atmosphere more like another
planet than earth, one that can quickly kill most other creatures,

including
humans. And they form colonies larger than any other bat, larger, in fact,

than
any warm-blooded animal in the world.

The largest populations of Mexican free-tailed bats live in Central Texas

and
Mexico, but they are also common throughout much of western North America,
southward through Central America, and into the arid and semi arid regions

of
western and southern South America. They live in many habitats, including

urban
areas, and range- from deserts to piñon-juniper woodlands and pine-oak

forests.
Although bachelor colonies of free-tails have been found at elevations

over
9,000 feet, large nursery colonies tend to prefer relatively dry areas

below
5,000 feet. Mexican free-tails typically live in caves, abandoned mines,

or
tunnels, and also roost in buildings, under bridges, in rock shelters, in

hollow
trees, and in cliff-face crevices.

Mexican free-tailed bats are also known as "guano bats" for the prodigious
quantities of droppings that they produce. Extraction of guano for use as
natural fertilizer was once big business, and some is still sold

commercially.
From 1903 to 1923, at least 100,000 tons were removed from Carlsbad

Caverns
alone and sold to fruit growers in California. According to Charles

Campbell,
Bracken and Frio caves in Central Texas on average each produced 75 to 80

tons
annually in the early 1900s. Officials of the Southern Pacific Railroad
estimated that, early this century, they annually transported 65 carloads

of
30,000 pounds each from Texas, making bat guano the state's largest

mineral
export before oil. Bracken Cave, now owned and protected by BCI, was still
producing from 80 to 85 tons per year in the late 1980s.

Each free-tail cave is also a potential treasure trove for

biotechnologists.
Microbiologist Bernie Steele examined guano from Bracken Cave, finding

that a
single ounce contains billions of bacteria. He concluded that the cave

contains
thousands of species of bacteria, many of which may live nowhere else, and

most
of which we know nothing about. Species he identified produce enzymes

useful in
detoxifying industrial wastes, producing natural insecticides, improving
detergents, and converting waste byproducts into alcohol. A large

proportion are
also potential sources of new antibiotics. Stratified guano deposits in
free-tail bat caves have also been used to monitor environmental pollution

and
to investigate prehistoric climatic changes.
Free-tailed bats have supported several American war efforts as well. When
Confederacy ports were blockaded in the latter part of 1863, a gun powder
factory was established near San Antonio. The powder's most valuable

ingredient,
saltpeter, was made from local bat guano. During World War 11, major

free-tailed
bat caves near San Antonio were carefully guarded during top-secret

research
coded "Project X-Ray."* The U.S. Air Force hoped to use bats as carriers

of
small incendiary bombs that would be dropped on Japan. The project began

to lose
favor when escaped bat bombardiers set fire to air base barracks and a

general's
car. After being passed on to the Navy, and finally the Marine Corps, the
project was canceled.

WHILE MOST PEOPLE are unaware of the presence of these bats in their area,
Mexican free-tails are very much a part of life in Central Texas, where

the
largest populations in the United States make their summer homes. These

huge
colonies, several numbering in the millions each, are where mothers

congregate
to give birth. The importance of these nursery sites is enormous; bats

born here
help replenish colonies throughout much of the Southwest and other areas.

Bats begin arriving in Central Texas in late February, having migrated

from
overwintering sites in Mexico. Active year-round, free-tails do not

hibernate.
just before their northward migration, they mate. Although young males
apparently do not reach sexual maturity until their second year, females

as
young as a year old have been found pregnant.

By summer, male and female free-tails will have divided into bachelor and
nursery colonies. Bachelor groups are relatively small, consisting of

dozens to
hundreds of individuals, but can number 100,000 or more. In contrast, most
nursery colonies are large, numbering from the hundreds of thousands to
millions. Bracken Cave is home to some 20 million free-tailed bats, a

population
that almost doubles when the bats give birth. This is the largest known

bat
colony in the world.

Typically, each female produces just one young, and virtually all give

birth
during a brief span of time, peaking between the first and third weeks of

June.
Birth periods may vary from year to year since weather differences can

affect
the length of gestation. Newborn young, called pups, weigh nearly a

quarter of
their mother's weight and are often more than half as long.

Mothers give birth while clinging to the roost with both thumbs and one or

both
feet. Babies are born naked, often with their eyes open. As soon as the

baby is
born, the mother carefully cleans and nurses it. For up to an hour, the

newborn
remains attached to its mother by the umbilical cord, safeguarding against

falls
and allowing time to learn one another's scent and voice before becoming
separated.

Eventually, the mother pulls away to dislodge the placenta, which remains
attached to the baby until it dries and falls off a day or two later. Pups

have
an instinctual tenacious clinging response, using their large feet and

thumbs to
hold on to walls and their tiny incisor teeth to cling to mothers or other

bats.
Richard Davis reported during his research that when a single baby was

removed
from a cave wall, as many as 15 could be pulled off as each clung to the

next.

Each cave appears to have favored areas where young are deposited year

after
year. Gary McCracken and Mary Gustin, who conducted extensive research on

the
huge nursery colonies of Central Texas, found average roosting densities

of 400
pups per square foot and sometimes as many as 500. As the thousands of

pups
squeak, jostle, and crawl over one another, the cave walls are alive with
constant motion and sound.

With so much confusion, it had long been believed that mothers nursed the

first
pup they found. But McCracken postulated just the opposite. Using

sophisticated
genetic analysis of mothers with nursing young, he documented that nursing

is
not random. He and Gustin then used specially marked mother and young

pairs,
monitoring them with nightviewing devices attached to video cameras, to

show
that each mother finds and nurses her own pup multiple times daily.

They found that mothers roost apart in adult clusters, remembering the
approximate locations of their pups. Since pups may move from a few inches

to
over a yard between feedings, locating them among the thousands of others

is a
remarkable feat. Mothers and pups recognize each other's unique voices at

least
three feet away and move toward one other despite the incredible confusion

of
calls emanating from countless thousands of other bats. Multiple landings

are
typically required to find a pup, each bracketing its location in a manner
suggesting that a mother is triangulating her pup's voice. Finding her

young can
take as little as 12 seconds to nearly 10 minutes. She most commonly feeds

her
pup before she goes out to feed and again when she returns in the morning.

Final recognition is by scent, though it remains to be discovered whether

the
scent is placed on the pup from glands on the mother's face, or whether

each pup
has its own unique odor. A successful reunion ends with a mother touching

the
top of her pup's head with her muzzle, apparently smelling and exchanging
vocalizations with it. Such exchanges can last for a minute or more before

the
mother raises her folded wing and nudges the pup toward one of her

breasts.

Over a 24-hour period, she may produce as much as a quarter of her own

body
weight in milk. Young free-tails grow rapidly, benefitting from prodigious
quantities of this extremely rich
milk. They reach adult mass and learn to fly when four to five weeks old

and are
weaned within approximately five to six weeks.

On its first attempt at flight, a young free-tail must avoid several

mid-air
collisions per second, relying on an as yet untested navigation system in

a dark
cave. Although amazingly few serious collisions occur, those that do can

break
wings or ground a bat long enough to be attacked by swarms of dermestid

beetles
and their larva that live on the floors of most free-tailed bat caves. As

with
other bats, the heaviest mortality probably occurs in the first year,

perhaps as
much as 50 percent.

Predation at entrances to nursery caves increases dramatically as the

young bats
learn to fly. Avian predators are many, with red-tailed hawks and owls the

most
common, catching flying bats during emergence and occasionally entering

caves to
catch those roosting near entrances. Raccoons, opossums, skunks, and other
mammals also prey on the emerging bats, as well as several types of large
snakes. Given the huge numbers of bats present, such predators likely have
relatively little impact.
WITH COLONIES OF this size, cave temperatures are raised dramatically. In
Bracken Cave, the 20 million mother bats, with a body mass roughly equal

to 271
tons, generate an enormous amount of heat. During summer, the cave's

temperature
varies only one-sixth as much as the outside; without its bats, Bracken

Cave's
walls likely would be less than 68 F. Shared body heat raises average wall
temperatures to 88 F, enabling the bats to maintain cluster temperatures

of
100-105 with greatly reduced energy expenditure. As the summer progresses,
however, bats may overheat the cave, forcing large numbers of roosting
individuals to extend and
flap their wings or even take flight to cool down.

With fresh droppings and occasional dead bats falling to the floor in

Bracken,
dermestid beetles begin to multiply. By mid-summer, their numbers can be

truly
astronomical, causing the floor surface to be in constant seething motion

with
dermestids scurrying about looking for food. While young bats falling to

the
floor can be skeletonized in minutes, the greatest impact of dermestids

comes
from their waste byproducts, which, combined with water vapor, become

ammonium
hydroxide.

That free-tailed bats can thrive in this toxic atmosphere may be one of

the most
remarkable things about them. Concentrations of ammonia in free-tail caves

can
quickly build to levels that are lethal to humans, but the bats survive by
lowering their metabolic rates. Carbon dioxide then accumulates, both in

the
bats' blood and in respiratory mucous, directly proportional to increases

in
ammonia inhalation. The carbon dioxide neutralizes the ammonia in a

buffering
mechanism that protects the lungs.

Although concentrations of just 250 parts per million are highly hazardous

to
humans, free-tails can filter out more than 97 percent of the ammonia

present
when inhaled at 1,130 parts per million and can still eliminate 73 percent

at
over 5,000 parts per million. Levels in their roosts, however, rarely

exceed
1,000 parts. Depending on the concentration of ammonia in a freetail

roost, the
bats' fur bleaches from its natural dark brown or grey to various shades

of
reddish brown. In caves where there are no dermestid beetles, ammonia

buildup
does not occur.

EACH NIGHT, colonies leave their roosts to feed, emerging in great, often
spectacular, columns. The most impressive flights occur after the young

begin to
emerge with adults in August and September. Many have likened the sound of
thousands and thousands of wings beating the air to that of a white-water

river.
Observers often feel a slight breeze created by the bats as they swirl

higher
and higher to gain altitude before forming vast undulating columns.

Flights from
Bracken Cave are so dense that they can be seen on both airport and

weather
radar screens miles away. Emergences of colonies of this size often go on

for
hours.

Mexican free-tailed bats are designed for rapid, long-distance travel.

Their
exceptionally long, narrow wings are geared for relatively highspeed,
low-maneuverability flight in open areas. Even their short, velvety fur

appears
to be an adaptation to reduce drag, and their ear orientation appears to

form
airfoils that contribute lift during flight. They have been clocked at

average
flight speeds of 25 miles per hour and as high as 47 miles per hour in

level
flight, but they can also attain speeds of over 60 miles per hour using

tail
winds.

Mexican free-tails normally emerge by sundown. Researcher Timothy Williams
observed Bracken Cave bats with radar, concluding that most feeding

occurred
within 528 feet of the ground. He and his research team observed dense,
early-evening concentrations of flying insects within this range. Some
scientists speculate that the bats from Bracken, which have been found

flying at
altitudes of 6,600 to 10,000 and more feet, may also be feeding on
concentrations of migratory moths at these heights. And again, they may be
simply catching high tail winds to speed travel to distant locations.

Little is
known about how far they travel to feed, but given how high and fast they

can
fly, many likely go more than 50 miles in one direction each night.

Free-tails spend more time traveling and feeding each night than most

bats, in
part due to competition from large numbers of roost mates. They typically

are on
the wing from dusk until dawn. Nursing mothers require at least twice as

much
food as nonreproductive bats, especially as their pups near fledging. At

such
times, researcher Thomas Kunz found that they may consume their body

weight
nightly.

If one assumes that the 20 million nursing mothers at Bracken Cave each

eat
their body weight of about 12.3 grams, a single night's consumption easily

could
exceed 250 tons of flying insects. Their total ecological and economic

impact is
probably enormous. One study conducted near Carlsbad Caverns, New Mexico,
determined that about half of the insects eaten were pests that had fed on
alfalfa and cotton crops, the nearest of which were grown some 40 miles

away
along the Pecos River.

Mexican free-tails feed exclusively on flying insects, mostly moths,

flying
ants, and beetles, according to samples thus far reported. At the turn of

the
century, Charles Campbell, the city bacteriologist for San Antonio, Texas,

built
large artificial bat roosts to "control mosquitoes" [BATS, Summer 1989].

Some of
these tower-like structures were occupied by hundreds of thousands of

bats, and
many San Antonians swore by his success.

Although Campbell observed bats of unknown identity catching mosquitoes in

the
area, there is no documentation that the free-tailed bats from his

artificial
roosts actually ate them. Given the high-speed, relatively

low-maneuverability
flight of free-tails, it seems unlikely that they would prey extensively

on
mosquitoes. Bats, however, are highly opportunistic; the larger, also
fast-flying, hoary bat (Lasiurus cinereus) is known to home in on

mosquitoes
when they are abundant.

At dawn, the free-tails return to their roost in an event sometimes said

to be
even more spectacular than evening emergences. Richard Davis and his

fellow
researchers observed flocks of thousands of bats each, first becoming

visible
4,900 to 8,200 feet above Bracken Cave. These high-altitude flocks

sometimes
flew past the entrance at speeds of almost 60 miles per hour before

turning
around and diving toward the entrance. Beginning about two hours before

sunrise,
small groups built up into a continuous diving stream, reaching the

greatest
density about 30 minutes before dawn. The first arriving bats came in

shallow,
zigzagging glides, but as flight density increased, they formed a

continuous
stream of individuals dropping out of the sky into the mouth of the cave.

Each
was executing a rapid series of free falls with closed wings, alternating

with
abrupt, brief wing openings to control speed and direction. Some groups

dropped
nearly 10,000 feet at speeds estimated to exceed 80 miles per hour.

AS SOON AS their young have become proficient flyers, many free-tails

leave the
major nursery caves of Central Texas. Once thought to be migratory

movements,
these August departures apparently are only local and are correlated with
weather patterns, combined with the stress of overheating and concentrated

gas
buildup in their caves. just before bats begin to leave Bracken Cave in

early
August, huge clusters roost within inches of direct sunlight in the cave
entrance where fresh air is most available. These factors may also be

combined
with attempts to escape parasites that build up on roosts during the

nursery
period.

As large numbers of bats leave the cave, they begin appearing in groups of

tens
to hundreds of thousands under highway bridges and in almost any other

available
place. During 1993, an extremely dry year in Central Texas, so many

free-tails
attempted to move under Austin's Congress Avenue Bridge that tens of

thousands
were forced to hang out in the open on the concrete pillars. With

three-quarters
of a million bats of its own, the bridge is the site of the largest urban

colony
of bats in the world.

Additional groups of up to 500,000 each were reported beneath other

bridges that
year, and unprecedented numbers moved into parking garages, vacant

buildings,
and sports stadiums. But on the night when the first mild cool front

passed in
early September, many thousands of free-tails that had been roosting in

exposed
places apparently returned to Bracken Cave, which had by then been purged

of hot
gases by the cool air. Although the emergence from Bracken had been

surprisingly
small for several weeks, it was extraordinarily large on the evening

following
the disappearance of the excess bats from the Congress Avenue Bridge, some

60
miles away.

True southward migration of the free-tails appears not to begin until

October.
The vast majority of the U.S. population spends the winter mostly in large

caves
of northern and Central Mexico. Populations living in California, western
Arizona, Oregon, Nevada, and southwestern Utah apparently live in roughly

the
same areas year-round, though seasonal movements among roosts are common.

There
are two main migrations. Most of those from the Southwest migrate south

along
the Sierra Madre Occidental and the West Coast of Mexico at least as far

south
as the state of Sinaloa. Free-tails from the Great Plains typically travel
southward through

Texas and along the Sierra Madre Oriental into eastern and south-central

Mexico,
some perhaps farther.

It is clear that major migratory departures in the fall are triggered by

the
passage of strong cold fronts from the north. Large departures from

Bracken are
typically correlated with passage of extra-strong cold fronts arriving in

late
October or early November. Departure dates can vary by several weeks in
different years, according to changing weather patterns. Not all of the

bats
leave at once, instead departing in several large groups at different

times.

Even among populations that migrate, not all bats leave. Several thousand

have
been observed overwintering in Bracken Cave, as well as in concrete

crevices
beneath the Congress Avenue Bridge, and in old buildings in Austin.

Although
free-tails can enter torpor during inclement winter weather, they are not

true
hibernators. During extremely cold weather, many die. It is unknown why

some
stay behind.

The longest proven migrations are of bats banded by Bryan Glass in

northwestern
Oklahoma and later recovered up to 1,104 miles south in Mexico. The

northernmost
area where he believed any of his bats could have overwintered was 480

miles
south in Texas. The original bandings were made at four caves less than 48

miles
apart, between which the bats intermingled. One bat was recaptured at its

cave
of birth in Oklahoma after having completed eight migratory circuits.

Free-tails
typically return to their home areas, but for these long distance

travelers, a
home area may include caves over 100 miles apart.

All available evidence suggests that free-tails typically travel in groups

at
all seasons. Richard Davis and fellow researchers recorded a particularly
impressive spring arrival on April 22 at Frio Cave in Texas. At a time

when few
other bats had yet arrived, "several million bats hurtled down out of the

night
within the space of ten minutes." They arrived at about midnight. Denny
Constantine, another researcher, believed that inexperienced travelers

arriving
at night could locate less familiar caves simply by listening for local

bats and
following them in. Traveling in groups certainly must increase the odds

that
some in the group will know the way.

Davis believed that migratory movements were rapid, crossing Texas in one

or a
few nonstop flights, covering at least 290 miles a night. Given knowledge

of bat
flight speeds with tail winds, migrating free-tails should be able to

cover that
distance in no more than five hours, perhaps substantially less, depending

on
wind velocity. Such timing would ensure arrival at stopover caves at

optimal
times for following other bats in, if necessary, and allow for

unanticipated
delays due to bad weather.

WHILE FREE-TAILED BATS are among the more studied, what remains to be

discovered
about them may be even more fascinating than what we already know. Why do

so
many fly so high? Are they simply catching tail winds to aid in rapid

travel to
distant locations, or are they actually feeding at such high altitudes?

How do
they navigate at high altitudes, given the fact that their echolocation

signals
reach little more than 100 feet and that cave entrances can be nearly

impossible
to see from even a few hundred yards? Bats are known to use celestial

cues, but
whatever cues they are relying on must work both night and day, since

flights
often arrive in midmorning.

Perhaps the most interesting questions of all involve the composition and

role
of flocks. How do they form? Who leads them, and how do they know where

they are
going, or how early to leave to ensure arrival at a time when they can

maximize
feeding success? Are groups composed of roostmates that hang in close

proximity
to each other by day, or do they have some other means of getting together

prior
to leaving the cave? With animals as fascinating as these, researchers

will be
pondering the answers to such questions for many years.

(Bio)
Merlin D. Tuttle is founder and Executive Director of BCI. Portions of

this
article are excerpted from his forthcoming book, Bats of North America, to

be
published by University of Texas Press.

(Footnote)
* The project is thoroughly described in Bat Bomb, World War II's Other

Secret
Weapon by Jack Couffer, available in the BCI catalogue.



On Sun, 02 Nov 2003 03:48:49 GMT, "JNJ" opined:

(This I have to admit is surprisingly pleasant to hear when considering

just
how bass ackwards most people here are. Hopefully they DO realize the

bats
are migrating OUT of the area for the cold season. JNJ)

************************************************* ***************
Bats Brought In To Battle Mosquitos
LAST UPDATE: 10/31/2003 10:51:04 PM

The Anderson Park District is taking unusual measures in the fight

against
West Nile. It is bringing in bats, in hopes the winged creatures will

gobble
up mosquitos, which are known to carry the virus. This comes after a
mosquito with West Nile was found over the summer in Kellogg Park,

leading
the District to cancel their Haunted Hike this year.

Puddles in the park were treated with chemical dunks to kill larvae, and
mosquito magnets were also used to get rid of the adult insects. Seven

bat
houses, made by local boy scouts, have been put up in the park. Each one
housing 30 bats, of 11 different species. Park District officials say if

the
experiment works, more bat houses will be put up in other parks next

fall.

One bat can eat 500 of the insects in just one hour. But there's no need

to
be afraid. Park officials say that bats' reputation of sucking blood and
flying into human hair are simply myths. They only fly close to people if
their exceptional radar and hearing show a bug nearby to eat.




  #5   Report Post  
Old 02-11-2003, 09:12 PM
JNJ
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

Well, this is silly. Bats like to eat beefy moths and other larger flying
insects. They do eat mosquitoes, but not nearly the amount people'd have

you
believe.


Oh, I don't know about that -- bats DO eat mosquitoes although it's not the
only thing in their diet of course. The very fact that the park district is
actually using a natural approach to pest control is encouraging -- it's
unusual in this area (highly unusual). Our mosquito problems have become
pretty bad in this area and deforestation is becoming a greater and greater
issue. While I doubt putting up bathouses is going to solve the skeeter
problem, it's a worthwhile experiment and it has the added benefit of
providing a habitat to the bats. I'll try to keep an eye out for how
successful (or unsuccessful) they report it to be -- I just hope they don't
expect results now and that they at least set the bathouses up properly.
Sigh

James




  #6   Report Post  
Old 02-11-2003, 09:22 PM
David Hill
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

I would have thought that trying to encourage Swallows , Swifts and House
Martins would be of more use.

--
David Hill
Abacus nurseries
www.abacus-nurseries.co.uk



  #7   Report Post  
Old 02-11-2003, 10:02 PM
animaux
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

Bats do not eat enough mosquitoes, nor to martins, to call them helpful in
controlling mosquito populations. Believe what you want, but the site you gave
me tells me nothing other than showing a bat and a MOTH which it found in flight
by echolocation.

It's a large myth that bats control mosquito populations as it is a myth martins
make any dent. The way to control or manage them is up to the homeowners who
leave out water in tubs, tires, plastic containers, bags, debris which can
capture water, etc. Our pond had Bt-Israelensis to control mosquito larva.

Like I said, bats eat them, but to make them a primary management tool of
mosquitoes is silly and uninformed.


On Sun, 02 Nov 2003 17:42:42 GMT, "Tina Gibson" opined:

It is not silly - in Canada (and I am sure in the northern US) the brown bat
is a very well known mosquito catcher. Like most mammals - each species or
subspecies has it's own niche. Maybe the mexican free tailed bat eats
mostly moths but there are bats that eat a LOT of mosquitos - just gotta
find the right ones. Even the ones who don't if they're eating that many
insects a night its worth having a few.
BTW puple martins are excellent mosquito catchers too!! Worth putting in a
purple martin house if you ar ein mosquito country - which I definitely am
in.
The bat population in Northwestern ontario has been drastically reduced in
the last 30 yrs by deforestation and there is currently a move to try and
repopulate.
Tina
Check out this link
http://www.cws-scf.ec.gc.ca/hww-fap/...cies=51&lang=e

"animaux" wrote in message
.. .
Well, this is silly. Bats like to eat beefy moths and other larger flying
insects. They do eat mosquitoes, but not nearly the amount people'd have

you
believe.

Taken from this website:
www.batcon.org


THE LIVES OF Mexican Free-tailed Bats
BY MERLIN D. TUTTLE

AS BATS GO, Mexican freetailed bats (Tadarida brasiliensis) may not be

much to
look at; they're drab in color, ranging from dark brown to grey, and they

have
the characteristic wrinkled lips that others of their genus share. Some

have
described them as looking like little gnomes with an overbite. They get

their
name from their tail, which protrudes freely beyond the tail membrane.

Despite their rather plain appearance, these are some of the world's most
intriguing bats. Speedsters of the bat world, they have been clocked

flying at
60 miles per hour using tail winds, and at altitudes over 10,000 feet,

higher
than any other bat. Free-tails can live in an atmosphere more like another
planet than earth, one that can quickly kill most other creatures,

including
humans. And they form colonies larger than any other bat, larger, in fact,

than
any warm-blooded animal in the world.

The largest populations of Mexican free-tailed bats live in Central Texas

and
Mexico, but they are also common throughout much of western North America,
southward through Central America, and into the arid and semi arid regions

of
western and southern South America. They live in many habitats, including

urban
areas, and range- from deserts to piñon-juniper woodlands and pine-oak

forests.
Although bachelor colonies of free-tails have been found at elevations

over
9,000 feet, large nursery colonies tend to prefer relatively dry areas

below
5,000 feet. Mexican free-tails typically live in caves, abandoned mines,

or
tunnels, and also roost in buildings, under bridges, in rock shelters, in

hollow
trees, and in cliff-face crevices.

Mexican free-tailed bats are also known as "guano bats" for the prodigious
quantities of droppings that they produce. Extraction of guano for use as
natural fertilizer was once big business, and some is still sold

commercially.
From 1903 to 1923, at least 100,000 tons were removed from Carlsbad

Caverns
alone and sold to fruit growers in California. According to Charles

Campbell,
Bracken and Frio caves in Central Texas on average each produced 75 to 80

tons
annually in the early 1900s. Officials of the Southern Pacific Railroad
estimated that, early this century, they annually transported 65 carloads

of
30,000 pounds each from Texas, making bat guano the state's largest

mineral
export before oil. Bracken Cave, now owned and protected by BCI, was still
producing from 80 to 85 tons per year in the late 1980s.

Each free-tail cave is also a potential treasure trove for

biotechnologists.
Microbiologist Bernie Steele examined guano from Bracken Cave, finding

that a
single ounce contains billions of bacteria. He concluded that the cave

contains
thousands of species of bacteria, many of which may live nowhere else, and

most
of which we know nothing about. Species he identified produce enzymes

useful in
detoxifying industrial wastes, producing natural insecticides, improving
detergents, and converting waste byproducts into alcohol. A large

proportion are
also potential sources of new antibiotics. Stratified guano deposits in
free-tail bat caves have also been used to monitor environmental pollution

and
to investigate prehistoric climatic changes.
Free-tailed bats have supported several American war efforts as well. When
Confederacy ports were blockaded in the latter part of 1863, a gun powder
factory was established near San Antonio. The powder's most valuable

ingredient,
saltpeter, was made from local bat guano. During World War 11, major

free-tailed
bat caves near San Antonio were carefully guarded during top-secret

research
coded "Project X-Ray."* The U.S. Air Force hoped to use bats as carriers

of
small incendiary bombs that would be dropped on Japan. The project began

to lose
favor when escaped bat bombardiers set fire to air base barracks and a

general's
car. After being passed on to the Navy, and finally the Marine Corps, the
project was canceled.

WHILE MOST PEOPLE are unaware of the presence of these bats in their area,
Mexican free-tails are very much a part of life in Central Texas, where

the
largest populations in the United States make their summer homes. These

huge
colonies, several numbering in the millions each, are where mothers

congregate
to give birth. The importance of these nursery sites is enormous; bats

born here
help replenish colonies throughout much of the Southwest and other areas.

Bats begin arriving in Central Texas in late February, having migrated

from
overwintering sites in Mexico. Active year-round, free-tails do not

hibernate.
just before their northward migration, they mate. Although young males
apparently do not reach sexual maturity until their second year, females

as
young as a year old have been found pregnant.

By summer, male and female free-tails will have divided into bachelor and
nursery colonies. Bachelor groups are relatively small, consisting of

dozens to
hundreds of individuals, but can number 100,000 or more. In contrast, most
nursery colonies are large, numbering from the hundreds of thousands to
millions. Bracken Cave is home to some 20 million free-tailed bats, a

population
that almost doubles when the bats give birth. This is the largest known

bat
colony in the world.

Typically, each female produces just one young, and virtually all give

birth
during a brief span of time, peaking between the first and third weeks of

June.
Birth periods may vary from year to year since weather differences can

affect
the length of gestation. Newborn young, called pups, weigh nearly a

quarter of
their mother's weight and are often more than half as long.

Mothers give birth while clinging to the roost with both thumbs and one or

both
feet. Babies are born naked, often with their eyes open. As soon as the

baby is
born, the mother carefully cleans and nurses it. For up to an hour, the

newborn
remains attached to its mother by the umbilical cord, safeguarding against

falls
and allowing time to learn one another's scent and voice before becoming
separated.

Eventually, the mother pulls away to dislodge the placenta, which remains
attached to the baby until it dries and falls off a day or two later. Pups

have
an instinctual tenacious clinging response, using their large feet and

thumbs to
hold on to walls and their tiny incisor teeth to cling to mothers or other

bats.
Richard Davis reported during his research that when a single baby was

removed
from a cave wall, as many as 15 could be pulled off as each clung to the

next.

Each cave appears to have favored areas where young are deposited year

after
year. Gary McCracken and Mary Gustin, who conducted extensive research on

the
huge nursery colonies of Central Texas, found average roosting densities

of 400
pups per square foot and sometimes as many as 500. As the thousands of

pups
squeak, jostle, and crawl over one another, the cave walls are alive with
constant motion and sound.

With so much confusion, it had long been believed that mothers nursed the

first
pup they found. But McCracken postulated just the opposite. Using

sophisticated
genetic analysis of mothers with nursing young, he documented that nursing

is
not random. He and Gustin then used specially marked mother and young

pairs,
monitoring them with nightviewing devices attached to video cameras, to

show
that each mother finds and nurses her own pup multiple times daily.

They found that mothers roost apart in adult clusters, remembering the
approximate locations of their pups. Since pups may move from a few inches

to
over a yard between feedings, locating them among the thousands of others

is a
remarkable feat. Mothers and pups recognize each other's unique voices at

least
three feet away and move toward one other despite the incredible confusion

of
calls emanating from countless thousands of other bats. Multiple landings

are
typically required to find a pup, each bracketing its location in a manner
suggesting that a mother is triangulating her pup's voice. Finding her

young can
take as little as 12 seconds to nearly 10 minutes. She most commonly feeds

her
pup before she goes out to feed and again when she returns in the morning.

Final recognition is by scent, though it remains to be discovered whether

the
scent is placed on the pup from glands on the mother's face, or whether

each pup
has its own unique odor. A successful reunion ends with a mother touching

the
top of her pup's head with her muzzle, apparently smelling and exchanging
vocalizations with it. Such exchanges can last for a minute or more before

the
mother raises her folded wing and nudges the pup toward one of her

breasts.

Over a 24-hour period, she may produce as much as a quarter of her own

body
weight in milk. Young free-tails grow rapidly, benefitting from prodigious
quantities of this extremely rich
milk. They reach adult mass and learn to fly when four to five weeks old

and are
weaned within approximately five to six weeks.

On its first attempt at flight, a young free-tail must avoid several

mid-air
collisions per second, relying on an as yet untested navigation system in

a dark
cave. Although amazingly few serious collisions occur, those that do can

break
wings or ground a bat long enough to be attacked by swarms of dermestid

beetles
and their larva that live on the floors of most free-tailed bat caves. As

with
other bats, the heaviest mortality probably occurs in the first year,

perhaps as
much as 50 percent.

Predation at entrances to nursery caves increases dramatically as the

young bats
learn to fly. Avian predators are many, with red-tailed hawks and owls the

most
common, catching flying bats during emergence and occasionally entering

caves to
catch those roosting near entrances. Raccoons, opossums, skunks, and other
mammals also prey on the emerging bats, as well as several types of large
snakes. Given the huge numbers of bats present, such predators likely have
relatively little impact.
WITH COLONIES OF this size, cave temperatures are raised dramatically. In
Bracken Cave, the 20 million mother bats, with a body mass roughly equal

to 271
tons, generate an enormous amount of heat. During summer, the cave's

temperature
varies only one-sixth as much as the outside; without its bats, Bracken

Cave's
walls likely would be less than 68 F. Shared body heat raises average wall
temperatures to 88 F, enabling the bats to maintain cluster temperatures

of
100-105 with greatly reduced energy expenditure. As the summer progresses,
however, bats may overheat the cave, forcing large numbers of roosting
individuals to extend and
flap their wings or even take flight to cool down.

With fresh droppings and occasional dead bats falling to the floor in

Bracken,
dermestid beetles begin to multiply. By mid-summer, their numbers can be

truly
astronomical, causing the floor surface to be in constant seething motion

with
dermestids scurrying about looking for food. While young bats falling to

the
floor can be skeletonized in minutes, the greatest impact of dermestids

comes
from their waste byproducts, which, combined with water vapor, become

ammonium
hydroxide.

That free-tailed bats can thrive in this toxic atmosphere may be one of

the most
remarkable things about them. Concentrations of ammonia in free-tail caves

can
quickly build to levels that are lethal to humans, but the bats survive by
lowering their metabolic rates. Carbon dioxide then accumulates, both in

the
bats' blood and in respiratory mucous, directly proportional to increases

in
ammonia inhalation. The carbon dioxide neutralizes the ammonia in a

buffering
mechanism that protects the lungs.

Although concentrations of just 250 parts per million are highly hazardous

to
humans, free-tails can filter out more than 97 percent of the ammonia

present
when inhaled at 1,130 parts per million and can still eliminate 73 percent

at
over 5,000 parts per million. Levels in their roosts, however, rarely

exceed
1,000 parts. Depending on the concentration of ammonia in a freetail

roost, the
bats' fur bleaches from its natural dark brown or grey to various shades

of
reddish brown. In caves where there are no dermestid beetles, ammonia

buildup
does not occur.

EACH NIGHT, colonies leave their roosts to feed, emerging in great, often
spectacular, columns. The most impressive flights occur after the young

begin to
emerge with adults in August and September. Many have likened the sound of
thousands and thousands of wings beating the air to that of a white-water

river.
Observers often feel a slight breeze created by the bats as they swirl

higher
and higher to gain altitude before forming vast undulating columns.

Flights from
Bracken Cave are so dense that they can be seen on both airport and

weather
radar screens miles away. Emergences of colonies of this size often go on

for
hours.

Mexican free-tailed bats are designed for rapid, long-distance travel.

Their
exceptionally long, narrow wings are geared for relatively highspeed,
low-maneuverability flight in open areas. Even their short, velvety fur

appears
to be an adaptation to reduce drag, and their ear orientation appears to

form
airfoils that contribute lift during flight. They have been clocked at

average
flight speeds of 25 miles per hour and as high as 47 miles per hour in

level
flight, but they can also attain speeds of over 60 miles per hour using

tail
winds.

Mexican free-tails normally emerge by sundown. Researcher Timothy Williams
observed Bracken Cave bats with radar, concluding that most feeding

occurred
within 528 feet of the ground. He and his research team observed dense,
early-evening concentrations of flying insects within this range. Some
scientists speculate that the bats from Bracken, which have been found

flying at
altitudes of 6,600 to 10,000 and more feet, may also be feeding on
concentrations of migratory moths at these heights. And again, they may be
simply catching high tail winds to speed travel to distant locations.

Little is
known about how far they travel to feed, but given how high and fast they

can
fly, many likely go more than 50 miles in one direction each night.

Free-tails spend more time traveling and feeding each night than most

bats, in
part due to competition from large numbers of roost mates. They typically

are on
the wing from dusk until dawn. Nursing mothers require at least twice as

much
food as nonreproductive bats, especially as their pups near fledging. At

such
times, researcher Thomas Kunz found that they may consume their body

weight
nightly.

If one assumes that the 20 million nursing mothers at Bracken Cave each

eat
their body weight of about 12.3 grams, a single night's consumption easily

could
exceed 250 tons of flying insects. Their total ecological and economic

impact is
probably enormous. One study conducted near Carlsbad Caverns, New Mexico,
determined that about half of the insects eaten were pests that had fed on
alfalfa and cotton crops, the nearest of which were grown some 40 miles

away
along the Pecos River.

Mexican free-tails feed exclusively on flying insects, mostly moths,

flying
ants, and beetles, according to samples thus far reported. At the turn of

the
century, Charles Campbell, the city bacteriologist for San Antonio, Texas,

built
large artificial bat roosts to "control mosquitoes" [BATS, Summer 1989].

Some of
these tower-like structures were occupied by hundreds of thousands of

bats, and
many San Antonians swore by his success.

Although Campbell observed bats of unknown identity catching mosquitoes in

the
area, there is no documentation that the free-tailed bats from his

artificial
roosts actually ate them. Given the high-speed, relatively

low-maneuverability
flight of free-tails, it seems unlikely that they would prey extensively

on
mosquitoes. Bats, however, are highly opportunistic; the larger, also
fast-flying, hoary bat (Lasiurus cinereus) is known to home in on

mosquitoes
when they are abundant.

At dawn, the free-tails return to their roost in an event sometimes said

to be
even more spectacular than evening emergences. Richard Davis and his

fellow
researchers observed flocks of thousands of bats each, first becoming

visible
4,900 to 8,200 feet above Bracken Cave. These high-altitude flocks

sometimes
flew past the entrance at speeds of almost 60 miles per hour before

turning
around and diving toward the entrance. Beginning about two hours before

sunrise,
small groups built up into a continuous diving stream, reaching the

greatest
density about 30 minutes before dawn. The first arriving bats came in

shallow,
zigzagging glides, but as flight density increased, they formed a

continuous
stream of individuals dropping out of the sky into the mouth of the cave.

Each
was executing a rapid series of free falls with closed wings, alternating

with
abrupt, brief wing openings to control speed and direction. Some groups

dropped
nearly 10,000 feet at speeds estimated to exceed 80 miles per hour.

AS SOON AS their young have become proficient flyers, many free-tails

leave the
major nursery caves of Central Texas. Once thought to be migratory

movements,
these August departures apparently are only local and are correlated with
weather patterns, combined with the stress of overheating and concentrated

gas
buildup in their caves. just before bats begin to leave Bracken Cave in

early
August, huge clusters roost within inches of direct sunlight in the cave
entrance where fresh air is most available. These factors may also be

combined
with attempts to escape parasites that build up on roosts during the

nursery
period.

As large numbers of bats leave the cave, they begin appearing in groups of

tens
to hundreds of thousands under highway bridges and in almost any other

available
place. During 1993, an extremely dry year in Central Texas, so many

free-tails
attempted to move under Austin's Congress Avenue Bridge that tens of

thousands
were forced to hang out in the open on the concrete pillars. With

three-quarters
of a million bats of its own, the bridge is the site of the largest urban

colony
of bats in the world.

Additional groups of up to 500,000 each were reported beneath other

bridges that
year, and unprecedented numbers moved into parking garages, vacant

buildings,
and sports stadiums. But on the night when the first mild cool front

passed in
early September, many thousands of free-tails that had been roosting in

exposed
places apparently returned to Bracken Cave, which had by then been purged

of hot
gases by the cool air. Although the emergence from Bracken had been

surprisingly
small for several weeks, it was extraordinarily large on the evening

following
the disappearance of the excess bats from the Congress Avenue Bridge, some

60
miles away.

True southward migration of the free-tails appears not to begin until

October.
The vast majority of the U.S. population spends the winter mostly in large

caves
of northern and Central Mexico. Populations living in California, western
Arizona, Oregon, Nevada, and southwestern Utah apparently live in roughly

the
same areas year-round, though seasonal movements among roosts are common.

There
are two main migrations. Most of those from the Southwest migrate south

along
the Sierra Madre Occidental and the West Coast of Mexico at least as far

south
as the state of Sinaloa. Free-tails from the Great Plains typically travel
southward through

Texas and along the Sierra Madre Oriental into eastern and south-central

Mexico,
some perhaps farther.

It is clear that major migratory departures in the fall are triggered by

the
passage of strong cold fronts from the north. Large departures from

Bracken are
typically correlated with passage of extra-strong cold fronts arriving in

late
October or early November. Departure dates can vary by several weeks in
different years, according to changing weather patterns. Not all of the

bats
leave at once, instead departing in several large groups at different

times.

Even among populations that migrate, not all bats leave. Several thousand

have
been observed overwintering in Bracken Cave, as well as in concrete

crevices
beneath the Congress Avenue Bridge, and in old buildings in Austin.

Although
free-tails can enter torpor during inclement winter weather, they are not

true
hibernators. During extremely cold weather, many die. It is unknown why

some
stay behind.

The longest proven migrations are of bats banded by Bryan Glass in

northwestern
Oklahoma and later recovered up to 1,104 miles south in Mexico. The

northernmost
area where he believed any of his bats could have overwintered was 480

miles
south in Texas. The original bandings were made at four caves less than 48

miles
apart, between which the bats intermingled. One bat was recaptured at its

cave
of birth in Oklahoma after having completed eight migratory circuits.

Free-tails
typically return to their home areas, but for these long distance

travelers, a
home area may include caves over 100 miles apart.

All available evidence suggests that free-tails typically travel in groups

at
all seasons. Richard Davis and fellow researchers recorded a particularly
impressive spring arrival on April 22 at Frio Cave in Texas. At a time

when few
other bats had yet arrived, "several million bats hurtled down out of the

night
within the space of ten minutes." They arrived at about midnight. Denny
Constantine, another researcher, believed that inexperienced travelers

arriving
at night could locate less familiar caves simply by listening for local

bats and
following them in. Traveling in groups certainly must increase the odds

that
some in the group will know the way.

Davis believed that migratory movements were rapid, crossing Texas in one

or a
few nonstop flights, covering at least 290 miles a night. Given knowledge

of bat
flight speeds with tail winds, migrating free-tails should be able to

cover that
distance in no more than five hours, perhaps substantially less, depending

on
wind velocity. Such timing would ensure arrival at stopover caves at

optimal
times for following other bats in, if necessary, and allow for

unanticipated
delays due to bad weather.

WHILE FREE-TAILED BATS are among the more studied, what remains to be

discovered
about them may be even more fascinating than what we already know. Why do

so
many fly so high? Are they simply catching tail winds to aid in rapid

travel to
distant locations, or are they actually feeding at such high altitudes?

How do
they navigate at high altitudes, given the fact that their echolocation

signals
reach little more than 100 feet and that cave entrances can be nearly

impossible
to see from even a few hundred yards? Bats are known to use celestial

cues, but
whatever cues they are relying on must work both night and day, since

flights
often arrive in midmorning.

Perhaps the most interesting questions of all involve the composition and

role
of flocks. How do they form? Who leads them, and how do they know where

they are
going, or how early to leave to ensure arrival at a time when they can

maximize
feeding success? Are groups composed of roostmates that hang in close

proximity
to each other by day, or do they have some other means of getting together

prior
to leaving the cave? With animals as fascinating as these, researchers

will be
pondering the answers to such questions for many years.

(Bio)
Merlin D. Tuttle is founder and Executive Director of BCI. Portions of

this
article are excerpted from his forthcoming book, Bats of North America, to

be
published by University of Texas Press.

(Footnote)
* The project is thoroughly described in Bat Bomb, World War II's Other

Secret
Weapon by Jack Couffer, available in the BCI catalogue.



On Sun, 02 Nov 2003 03:48:49 GMT, "JNJ" opined:

(This I have to admit is surprisingly pleasant to hear when considering

just
how bass ackwards most people here are. Hopefully they DO realize the

bats
are migrating OUT of the area for the cold season. JNJ)

************************************************* ***************
Bats Brought In To Battle Mosquitos
LAST UPDATE: 10/31/2003 10:51:04 PM

The Anderson Park District is taking unusual measures in the fight

against
West Nile. It is bringing in bats, in hopes the winged creatures will

gobble
up mosquitos, which are known to carry the virus. This comes after a
mosquito with West Nile was found over the summer in Kellogg Park,

leading
the District to cancel their Haunted Hike this year.

Puddles in the park were treated with chemical dunks to kill larvae, and
mosquito magnets were also used to get rid of the adult insects. Seven

bat
houses, made by local boy scouts, have been put up in the park. Each one
housing 30 bats, of 11 different species. Park District officials say if

the
experiment works, more bat houses will be put up in other parks next

fall.

One bat can eat 500 of the insects in just one hour. But there's no need

to
be afraid. Park officials say that bats' reputation of sucking blood and
flying into human hair are simply myths. They only fly close to people if
their exceptional radar and hearing show a bug nearby to eat.




  #8   Report Post  
Old 02-11-2003, 10:02 PM
Tina Gibson
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

Here we are trying to encourage all of these things but bats as well. I love
them - they come out a dusk when the birds are settling down and you can
watch them swooping around eating the mosquitos!! You know it's mosquitos
or the occasional moth depending on the time of year, because most of the
other flying insects are gone to hide in the bush for the night. The

"David Hill" wrote in message
...
I would have thought that trying to encourage Swallows , Swifts and House
Martins would be of more use.

--
David Hill
Abacus nurseries
www.abacus-nurseries.co.uk





  #9   Report Post  
Old 02-11-2003, 10:02 PM
Tina Gibson
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

Did you actually read the info on the site? And I have 90 acres of property
with a beaver pond and swamp area - I am not going to control the mosquito
larvae in those areas. I am not talking about city populations of bats dear.
I am talking about natural forested areas - or what is left of them. If a
National Park wants to increase the population of bats, martens or swallows
what is the big deal to you?
Are you an ecologist specialising in Bats? or mosquito populations? On what
basis are you refuting this? The site you posted only spoke of Mexican bats
that inhabit southern areas. Do you have other published references that
have disproven bat population density has no affect on mosquito populations?


"animaux" wrote in message
...
Bats do not eat enough mosquitoes, nor to martins, to call them helpful

in
controlling mosquito populations. Believe what you want, but the site you

gave
me tells me nothing other than showing a bat and a MOTH which it found in

flight
by echolocation.

It's a large myth that bats control mosquito populations as it is a myth

martins
make any dent. The way to control or manage them is up to the homeowners

who
leave out water in tubs, tires, plastic containers, bags, debris which can
capture water, etc. Our pond had Bt-Israelensis to control mosquito

larva.

Like I said, bats eat them, but to make them a primary management tool of
mosquitoes is silly and uninformed.


On Sun, 02 Nov 2003 17:42:42 GMT, "Tina Gibson" opined:

It is not silly - in Canada (and I am sure in the northern US) the brown

bat
is a very well known mosquito catcher. Like most mammals - each species

or
subspecies has it's own niche. Maybe the mexican free tailed bat eats
mostly moths but there are bats that eat a LOT of mosquitos - just gotta
find the right ones. Even the ones who don't if they're eating that many
insects a night its worth having a few.
BTW puple martins are excellent mosquito catchers too!! Worth putting in

a
purple martin house if you ar ein mosquito country - which I definitely

am
in.
The bat population in Northwestern ontario has been drastically reduced

in
the last 30 yrs by deforestation and there is currently a move to try and
repopulate.
Tina
Check out this link
http://www.cws-scf.ec.gc.ca/hww-fap/...cies=51&lang=e

"animaux" wrote in message
.. .
Well, this is silly. Bats like to eat beefy moths and other larger

flying
insects. They do eat mosquitoes, but not nearly the amount people'd

have
you
believe.

Taken from this website:
www.batcon.org


THE LIVES OF Mexican Free-tailed Bats
BY MERLIN D. TUTTLE

AS BATS GO, Mexican freetailed bats (Tadarida brasiliensis) may not be

much to
look at; they're drab in color, ranging from dark brown to grey, and

they
have
the characteristic wrinkled lips that others of their genus share. Some

have
described them as looking like little gnomes with an overbite. They get

their
name from their tail, which protrudes freely beyond the tail membrane.

Despite their rather plain appearance, these are some of the world's

most
intriguing bats. Speedsters of the bat world, they have been clocked

flying at
60 miles per hour using tail winds, and at altitudes over 10,000 feet,

higher
than any other bat. Free-tails can live in an atmosphere more like

another
planet than earth, one that can quickly kill most other creatures,

including
humans. And they form colonies larger than any other bat, larger, in

fact,
than
any warm-blooded animal in the world.

The largest populations of Mexican free-tailed bats live in Central

Texas
and
Mexico, but they are also common throughout much of western North

America,
southward through Central America, and into the arid and semi arid

regions
of
western and southern South America. They live in many habitats,

including
urban
areas, and range- from deserts to piñon-juniper woodlands and pine-oak

forests.
Although bachelor colonies of free-tails have been found at elevations

over
9,000 feet, large nursery colonies tend to prefer relatively dry areas

below
5,000 feet. Mexican free-tails typically live in caves, abandoned

mines,
or
tunnels, and also roost in buildings, under bridges, in rock shelters,

in
hollow
trees, and in cliff-face crevices.

Mexican free-tailed bats are also known as "guano bats" for the

prodigious
quantities of droppings that they produce. Extraction of guano for use

as
natural fertilizer was once big business, and some is still sold

commercially.
From 1903 to 1923, at least 100,000 tons were removed from Carlsbad

Caverns
alone and sold to fruit growers in California. According to Charles

Campbell,
Bracken and Frio caves in Central Texas on average each produced 75 to

80
tons
annually in the early 1900s. Officials of the Southern Pacific Railroad
estimated that, early this century, they annually transported 65

carloads
of
30,000 pounds each from Texas, making bat guano the state's largest

mineral
export before oil. Bracken Cave, now owned and protected by BCI, was

still
producing from 80 to 85 tons per year in the late 1980s.

Each free-tail cave is also a potential treasure trove for

biotechnologists.
Microbiologist Bernie Steele examined guano from Bracken Cave, finding

that a
single ounce contains billions of bacteria. He concluded that the cave

contains
thousands of species of bacteria, many of which may live nowhere else,

and
most
of which we know nothing about. Species he identified produce enzymes

useful in
detoxifying industrial wastes, producing natural insecticides,

improving
detergents, and converting waste byproducts into alcohol. A large

proportion are
also potential sources of new antibiotics. Stratified guano deposits in
free-tail bat caves have also been used to monitor environmental

pollution
and
to investigate prehistoric climatic changes.
Free-tailed bats have supported several American war efforts as well.

When
Confederacy ports were blockaded in the latter part of 1863, a gun

powder
factory was established near San Antonio. The powder's most valuable

ingredient,
saltpeter, was made from local bat guano. During World War 11, major

free-tailed
bat caves near San Antonio were carefully guarded during top-secret

research
coded "Project X-Ray."* The U.S. Air Force hoped to use bats as

carriers
of
small incendiary bombs that would be dropped on Japan. The project

began
to lose
favor when escaped bat bombardiers set fire to air base barracks and a

general's
car. After being passed on to the Navy, and finally the Marine Corps,

the
project was canceled.

WHILE MOST PEOPLE are unaware of the presence of these bats in their

area,
Mexican free-tails are very much a part of life in Central Texas, where

the
largest populations in the United States make their summer homes. These

huge
colonies, several numbering in the millions each, are where mothers

congregate
to give birth. The importance of these nursery sites is enormous; bats

born here
help replenish colonies throughout much of the Southwest and other

areas.

Bats begin arriving in Central Texas in late February, having migrated

from
overwintering sites in Mexico. Active year-round, free-tails do not

hibernate.
just before their northward migration, they mate. Although young males
apparently do not reach sexual maturity until their second year, female

s
as
young as a year old have been found pregnant.

By summer, male and female free-tails will have divided into bachelor

and
nursery colonies. Bachelor groups are relatively small, consisting of

dozens to
hundreds of individuals, but can number 100,000 or more. In contrast,

most
nursery colonies are large, numbering from the hundreds of thousands to
millions. Bracken Cave is home to some 20 million free-tailed bats, a

population
that almost doubles when the bats give birth. This is the largest known

bat
colony in the world.

Typically, each female produces just one young, and virtually all give

birth
during a brief span of time, peaking between the first and third weeks

of
June.
Birth periods may vary from year to year since weather differences can

affect
the length of gestation. Newborn young, called pups, weigh nearly a

quarter of
their mother's weight and are often more than half as long.

Mothers give birth while clinging to the roost with both thumbs and one

or
both
feet. Babies are born naked, often with their eyes open. As soon as the

baby is
born, the mother carefully cleans and nurses it. For up to an hour, the

newborn
remains attached to its mother by the umbilical cord, safeguarding

against
falls
and allowing time to learn one another's scent and voice before

becoming
separated.

Eventually, the mother pulls away to dislodge the placenta, which

remains
attached to the baby until it dries and falls off a day or two later.

Pups
have
an instinctual tenacious clinging response, using their large feet and

thumbs to
hold on to walls and their tiny incisor teeth to cling to mothers or

other
bats.
Richard Davis reported during his research that when a single baby was

removed
from a cave wall, as many as 15 could be pulled off as each clung to

the
next.

Each cave appears to have favored areas where young are deposited year

after
year. Gary McCracken and Mary Gustin, who conducted extensive research

on
the
huge nursery colonies of Central Texas, found average roosting

densities
of 400
pups per square foot and sometimes as many as 500. As the thousands of

pups
squeak, jostle, and crawl over one another, the cave walls are alive

with
constant motion and sound.

With so much confusion, it had long been believed that mothers nursed

the
first
pup they found. But McCracken postulated just the opposite. Using

sophisticated
genetic analysis of mothers with nursing young, he documented that

nursing
is
not random. He and Gustin then used specially marked mother and young

pairs,
monitoring them with nightviewing devices attached to video cameras, to

show
that each mother finds and nurses her own pup multiple times daily.

They found that mothers roost apart in adult clusters, remembering the
approximate locations of their pups. Since pups may move from a few

inches
to
over a yard between feedings, locating them among the thousands of

others
is a
remarkable feat. Mothers and pups recognize each other's unique voices

at
least
three feet away and move toward one other despite the incredible

confusion
of
calls emanating from countless thousands of other bats. Multiple

landings
are
typically required to find a pup, each bracketing its location in a

manner
suggesting that a mother is triangulating her pup's voice. Finding her

young can
take as little as 12 seconds to nearly 10 minutes. She most commonly

feeds
her
pup before she goes out to feed and again when she returns in the

morning.

Final recognition is by scent, though it remains to be discovered

whether
the
scent is placed on the pup from glands on the mother's face, or whether

each pup
has its own unique odor. A successful reunion ends with a mother

touching
the
top of her pup's head with her muzzle, apparently smelling and

exchanging
vocalizations with it. Such exchanges can last for a minute or more

before
the
mother raises her folded wing and nudges the pup toward one of her

breasts.

Over a 24-hour period, she may produce as much as a quarter of her own

body
weight in milk. Young free-tails grow rapidly, benefitting from

prodigious
quantities of this extremely rich
milk. They reach adult mass and learn to fly when four to five weeks

old
and are
weaned within approximately five to six weeks.

On its first attempt at flight, a young free-tail must avoid several

mid-air
collisions per second, relying on an as yet untested navigation system

in
a dark
cave. Although amazingly few serious collisions occur, those that do

can
break
wings or ground a bat long enough to be attacked by swarms of dermestid

beetles
and their larva that live on the floors of most free-tailed bat caves.

As
with
other bats, the heaviest mortality probably occurs in the first year,

perhaps as
much as 50 percent.

Predation at entrances to nursery caves increases dramatically as the

young bats
learn to fly. Avian predators are many, with red-tailed hawks and owls

the
most
common, catching flying bats during emergence and occasionally entering

caves to
catch those roosting near entrances. Raccoons, opossums, skunks, and

other
mammals also prey on the emerging bats, as well as several types of

large
snakes. Given the huge numbers of bats present, such predators likely

have
relatively little impact.
WITH COLONIES OF this size, cave temperatures are raised dramatically.

In
Bracken Cave, the 20 million mother bats, with a body mass roughly

equal
to 271
tons, generate an enormous amount of heat. During summer, the cave's

temperature
varies only one-sixth as much as the outside; without its bats, Bracken

Cave's
walls likely would be less than 68 F. Shared body heat raises average

wall
temperatures to 88 F, enabling the bats to maintain cluster

temperatures
of
100-105 with greatly reduced energy expenditure. As the summer

progresses,
however, bats may overheat the cave, forcing large numbers of roosting
individuals to extend and
flap their wings or even take flight to cool down.

With fresh droppings and occasional dead bats falling to the floor in

Bracken,
dermestid beetles begin to multiply. By mid-summer, their numbers can

be
truly
astronomical, causing the floor surface to be in constant seething

motion
with
dermestids scurrying about looking for food. While young bats falling

to
the
floor can be skeletonized in minutes, the greatest impact of dermestids

comes
from their waste byproducts, which, combined with water vapor, become

ammonium
hydroxide.

That free-tailed bats can thrive in this toxic atmosphere may be one of

the most
remarkable things about them. Concentrations of ammonia in free-tail

caves
can
quickly build to levels that are lethal to humans, but the bats survive

by
lowering their metabolic rates. Carbon dioxide then accumulates, both

in
the
bats' blood and in respiratory mucous, directly proportional to

increases
in
ammonia inhalation. The carbon dioxide neutralizes the ammonia in a

buffering
mechanism that protects the lungs.

Although concentrations of just 250 parts per million are highly

hazardous
to
humans, free-tails can filter out more than 97 percent of the ammonia

present
when inhaled at 1,130 parts per million and can still eliminate 73

percent
at
over 5,000 parts per million. Levels in their roosts, however, rarely

exceed
1,000 parts. Depending on the concentration of ammonia in a freetail

roost, the
bats' fur bleaches from its natural dark brown or grey to various

shades
of
reddish brown. In caves where there are no dermestid beetles, ammonia

buildup
does not occur.

EACH NIGHT, colonies leave their roosts to feed, emerging in great,

often
spectacular, columns. The most impressive flights occur after the young

begin to
emerge with adults in August and September. Many have likened the sound

of
thousands and thousands of wings beating the air to that of a

white-water
river.
Observers often feel a slight breeze created by the bats as they swirl

higher
and higher to gain altitude before forming vast undulating columns.

Flights from
Bracken Cave are so dense that they can be seen on both airport and

weather
radar screens miles away. Emergences of colonies of this size often go

on
for
hours.

Mexican free-tailed bats are designed for rapid, long-distance travel.

Their
exceptionally long, narrow wings are geared for relatively highspeed,
low-maneuverability flight in open areas. Even their short, velvety fur

appears
to be an adaptation to reduce drag, and their ear orientation appears

to
form
airfoils that contribute lift during flight. They have been clocked at

average
flight speeds of 25 miles per hour and as high as 47 miles per hour in

level
flight, but they can also attain speeds of over 60 miles per hour using

tail
winds.

Mexican free-tails normally emerge by sundown. Researcher Timothy

Williams
observed Bracken Cave bats with radar, concluding that most feeding

occurred
within 528 feet of the ground. He and his research team observed dense,
early-evening concentrations of flying insects within this range. Some
scientists speculate that the bats from Bracken, which have been found

flying at
altitudes of 6,600 to 10,000 and more feet, may also be feeding on
concentrations of migratory moths at these heights. And again, they may

be
simply catching high tail winds to speed travel to distant locations.

Little is
known about how far they travel to feed, but given how high and fast

they
can
fly, many likely go more than 50 miles in one direction each night.

Free-tails spend more time traveling and feeding each night than most

bats, in
part due to competition from large numbers of roost mates. They

typically
are on
the wing from dusk until dawn. Nursing mothers require at least twice

as
much
food as nonreproductive bats, especially as their pups near fledging.

At
such
times, researcher Thomas Kunz found that they may consume their body

weight
nightly.

If one assumes that the 20 million nursing mothers at Bracken Cave each

eat
their body weight of about 12.3 grams, a single night's consumption

easily
could
exceed 250 tons of flying insects. Their total ecological and economic

impact is
probably enormous. One study conducted near Carlsbad Caverns, New

Mexico,
determined that about half of the insects eaten were pests that had fed

on
alfalfa and cotton crops, the nearest of which were grown some 40 miles

away
along the Pecos River.

Mexican free-tails feed exclusively on flying insects, mostly moths,

flying
ants, and beetles, according to samples thus far reported. At the turn

of
the
century, Charles Campbell, the city bacteriologist for San Antonio,

Texas,
built
large artificial bat roosts to "control mosquitoes" [BATS, Summer

1989].
Some of
these tower-like structures were occupied by hundreds of thousands of

bats, and
many San Antonians swore by his success.

Although Campbell observed bats of unknown identity catching mosquitoes

in
the
area, there is no documentation that the free-tailed bats from his

artificial
roosts actually ate them. Given the high-speed, relatively

low-maneuverability
flight of free-tails, it seems unlikely that they would prey

extensively
on
mosquitoes. Bats, however, are highly opportunistic; the larger, also
fast-flying, hoary bat (Lasiurus cinereus) is known to home in on

mosquitoes
when they are abundant.

At dawn, the free-tails return to their roost in an event sometimes

said
to be
even more spectacular than evening emergences. Richard Davis and his

fellow
researchers observed flocks of thousands of bats each, first becoming

visible
4,900 to 8,200 feet above Bracken Cave. These high-altitude flocks

sometimes
flew past the entrance at speeds of almost 60 miles per hour before

turning
around and diving toward the entrance. Beginning about two hours before

sunrise,
small groups built up into a continuous diving stream, reaching the

greatest
density about 30 minutes before dawn. The first arriving bats came in

shallow,
zigzagging glides, but as flight density increased, they formed a

continuous
stream of individuals dropping out of the sky into the mouth of the

cave.
Each
was executing a rapid series of free falls with closed wings,

alternating
with
abrupt, brief wing openings to control speed and direction. Some groups

dropped
nearly 10,000 feet at speeds estimated to exceed 80 miles per hour.

AS SOON AS their young have become proficient flyers, many free-tails

leave the
major nursery caves of Central Texas. Once thought to be migratory

movements,
these August departures apparently are only local and are correlated

with
weather patterns, combined with the stress of overheating and

concentrated
gas
buildup in their caves. just before bats begin to leave Bracken Cave in

early
August, huge clusters roost within inches of direct sunlight in the

cave
entrance where fresh air is most available. These factors may also be

combined
with attempts to escape parasites that build up on roosts during the

nursery
period.

As large numbers of bats leave the cave, they begin appearing in groups

of
tens
to hundreds of thousands under highway bridges and in almost any other

available
place. During 1993, an extremely dry year in Central Texas, so many

free-tails
attempted to move under Austin's Congress Avenue Bridge that tens of

thousands
were forced to hang out in the open on the concrete pillars. With

three-quarters
of a million bats of its own, the bridge is the site of the largest

urban
colony
of bats in the world.

Additional groups of up to 500,000 each were reported beneath other

bridges that
year, and unprecedented numbers moved into parking garages, vacant

buildings,
and sports stadiums. But on the night when the first mild cool front

passed in
early September, many thousands of free-tails that had been roosting in

exposed
places apparently returned to Bracken Cave, which had by then been

purged
of hot
gases by the cool air. Although the emergence from Bracken had been

surprisingly
small for several weeks, it was extraordinarily large on the evening

following
the disappearance of the excess bats from the Congress Avenue Bridge,

some
60
miles away.

True southward migration of the free-tails appears not to begin until

October.
The vast majority of the U.S. population spends the winter mostly in

large
caves
of northern and Central Mexico. Populations living in California,

western
Arizona, Oregon, Nevada, and southwestern Utah apparently live in

roughly
the
same areas year-round, though seasonal movements among roosts are

common.
There
are two main migrations. Most of those from the Southwest migrate south

along
the Sierra Madre Occidental and the West Coast of Mexico at least as

far
south
as the state of Sinaloa. Free-tails from the Great Plains typically

travel
southward through

Texas and along the Sierra Madre Oriental into eastern and

south-central
Mexico,
some perhaps farther.

It is clear that major migratory departures in the fall are triggered

by
the
passage of strong cold fronts from the north. Large departures from

Bracken are
typically correlated with passage of extra-strong cold fronts arriving

in
late
October or early November. Departure dates can vary by several weeks in
different years, according to changing weather patterns. Not all of the

bats
leave at once, instead departing in several large groups at different

times.

Even among populations that migrate, not all bats leave. Several

thousand
have
been observed overwintering in Bracken Cave, as well as in concrete

crevices
beneath the Congress Avenue Bridge, and in old buildings in Austin.

Although
free-tails can enter torpor during inclement winter weather, they are

not
true
hibernators. During extremely cold weather, many die. It is unknown why

some
stay behind.

The longest proven migrations are of bats banded by Bryan Glass in

northwestern
Oklahoma and later recovered up to 1,104 miles south in Mexico. The

northernmost
area where he believed any of his bats could have overwintered was 480

miles
south in Texas. The original bandings were made at four caves less than

48
miles
apart, between which the bats intermingled. One bat was recaptured at

its
cave
of birth in Oklahoma after having completed eight migratory circuits.

Free-tails
typically return to their home areas, but for these long distance

travelers, a
home area may include caves over 100 miles apart.

All available evidence suggests that free-tails typically travel in

groups
at
all seasons. Richard Davis and fellow researchers recorded a

particularly
impressive spring arrival on April 22 at Frio Cave in Texas. At a time

when few
other bats had yet arrived, "several million bats hurtled down out of

the
night
within the space of ten minutes." They arrived at about midnight. Denny
Constantine, another researcher, believed that inexperienced travelers

arriving
at night could locate less familiar caves simply by listening for local

bats and
following them in. Traveling in groups certainly must increase the odds

that
some in the group will know the way.

Davis believed that migratory movements were rapid, crossing Texas in

one
or a
few nonstop flights, covering at least 290 miles a night. Given

knowledge
of bat
flight speeds with tail winds, migrating free-tails should be able to

cover that
distance in no more than five hours, perhaps substantially less,

depending
on
wind velocity. Such timing would ensure arrival at stopover caves at

optimal
times for following other bats in, if necessary, and allow for

unanticipated
delays due to bad weather.

WHILE FREE-TAILED BATS are among the more studied, what remains to be

discovered
about them may be even more fascinating than what we already know. Why

do
so
many fly so high? Are they simply catching tail winds to aid in rapid

travel to
distant locations, or are they actually feeding at such high altitudes?

How do
they navigate at high altitudes, given the fact that their echolocation

signals
reach little more than 100 feet and that cave entrances can be nearly

impossible
to see from even a few hundred yards? Bats are known to use celestial

cues, but
whatever cues they are relying on must work both night and day, since

flights
often arrive in midmorning.

Perhaps the most interesting questions of all involve the composition

and
role
of flocks. How do they form? Who leads them, and how do they know where

they are
going, or how early to leave to ensure arrival at a time when they can

maximize
feeding success? Are groups composed of roostmates that hang in close

proximity
to each other by day, or do they have some other means of getting

together
prior
to leaving the cave? With animals as fascinating as these, researchers

will be
pondering the answers to such questions for many years.

(Bio)
Merlin D. Tuttle is founder and Executive Director of BCI. Portions of

this
article are excerpted from his forthcoming book, Bats of North America,

to
be
published by University of Texas Press.

(Footnote)
* The project is thoroughly described in Bat Bomb, World War II's Other

Secret
Weapon by Jack Couffer, available in the BCI catalogue.



On Sun, 02 Nov 2003 03:48:49 GMT, "JNJ" opined:

(This I have to admit is surprisingly pleasant to hear when

considering
just
how bass ackwards most people here are. Hopefully they DO realize the

bats
are migrating OUT of the area for the cold season. JNJ)

************************************************* ***************
Bats Brought In To Battle Mosquitos
LAST UPDATE: 10/31/2003 10:51:04 PM

The Anderson Park District is taking unusual measures in the fight

against
West Nile. It is bringing in bats, in hopes the winged creatures will

gobble
up mosquitos, which are known to carry the virus. This comes after a
mosquito with West Nile was found over the summer in Kellogg Park,

leading
the District to cancel their Haunted Hike this year.

Puddles in the park were treated with chemical dunks to kill larvae,

and
mosquito magnets were also used to get rid of the adult insects. Seven

bat
houses, made by local boy scouts, have been put up in the park. Each

one
housing 30 bats, of 11 different species. Park District officials say

if
the
experiment works, more bat houses will be put up in other parks next

fall.

One bat can eat 500 of the insects in just one hour. But there's no

need
to
be afraid. Park officials say that bats' reputation of sucking blood

and
flying into human hair are simply myths. They only fly close to people

if
their exceptional radar and hearing show a bug nearby to eat.






  #10   Report Post  
Old 02-11-2003, 10:02 PM
BT
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

What a great idea! Exchange the chance of getting west nile with the chance of
catching rabies! Boy aren't politicians clever!
http://tinyurl.com/tddo

Just breed dragonflies...they are the ones eating all the mosquitoes!

BT


"JNJ" wrote in message
...
(This I have to admit is surprisingly pleasant to hear when considering just
how bass ackwards most people here are. Hopefully they DO realize the bats
are migrating OUT of the area for the cold season. JNJ)

************************************************** **************
Bats Brought In To Battle Mosquitos
LAST UPDATE: 10/31/2003 10:51:04 PM

The Anderson Park District is taking unusual measures in the fight against
West Nile. It is bringing in bats, in hopes the winged creatures will gobble
up mosquitos, which are known to carry the virus. This comes after a
mosquito with West Nile was found over the summer in Kellogg Park, leading
the District to cancel their Haunted Hike this year.

Puddles in the park were treated with chemical dunks to kill larvae, and
mosquito magnets were also used to get rid of the adult insects. Seven bat
houses, made by local boy scouts, have been put up in the park. Each one
housing 30 bats, of 11 different species. Park District officials say if the
experiment works, more bat houses will be put up in other parks next fall.

One bat can eat 500 of the insects in just one hour. But there's no need to
be afraid. Park officials say that bats' reputation of sucking blood and
flying into human hair are simply myths. They only fly close to people if
their exceptional radar and hearing show a bug nearby to eat.






  #11   Report Post  
Old 02-11-2003, 10:22 PM
Tina Gibson
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

I think that there is a SLIGHTLY larger chance of being bit by a mosquito
than a bat. From where I sit I get hundreds of mosquito bites a year -
thousands over a life time. I've never been bitten by a bat - and have seen
many. My animals have not been bitten by them either.
Of course we could instead spray all the swampland with larvacide and spray
the bush with DEET.
Personally if between bats and martens and swallows and dragonflies, not to
mention other mosquito predators, we even decrease the mosquito population
around myself by 5% - I will be happier than spraying or destroying wetlands
as a control!!!
BTW all of the research that I have so far seen on bats or martens not being
a good control are minimal and not enought to draw a final conclusion on!
The studies will certainly be flying now so we shall see results in the next
5 yrs.



"BT" wrote in message
...
What a great idea! Exchange the chance of getting west nile with the

chance of
catching rabies! Boy aren't politicians clever!
http://tinyurl.com/tddo

Just breed dragonflies...they are the ones eating all the mosquitoes!

BT


"JNJ" wrote in message
...
(This I have to admit is surprisingly pleasant to hear when considering

just
how bass ackwards most people here are. Hopefully they DO realize the

bats
are migrating OUT of the area for the cold season. JNJ)

************************************************** **************
Bats Brought In To Battle Mosquitos
LAST UPDATE: 10/31/2003 10:51:04 PM

The Anderson Park District is taking unusual measures in the fight

against
West Nile. It is bringing in bats, in hopes the winged creatures will

gobble
up mosquitos, which are known to carry the virus. This comes after a
mosquito with West Nile was found over the summer in Kellogg Park,

leading
the District to cancel their Haunted Hike this year.

Puddles in the park were treated with chemical dunks to kill larvae, and
mosquito magnets were also used to get rid of the adult insects. Seven

bat
houses, made by local boy scouts, have been put up in the park. Each one
housing 30 bats, of 11 different species. Park District officials say if

the
experiment works, more bat houses will be put up in other parks next

fall.

One bat can eat 500 of the insects in just one hour. But there's no need

to
be afraid. Park officials say that bats' reputation of sucking blood and
flying into human hair are simply myths. They only fly close to people

if
their exceptional radar and hearing show a bug nearby to eat.






  #12   Report Post  
Old 03-11-2003, 12:42 AM
BT
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

"Tina Gibson" wrote in message
news:vjfpb.262095$pl3.30565@pd7tw3no...
I think that there is a SLIGHTLY larger chance of being bit by a mosquito
than a bat. From where I sit I get hundreds of mosquito bites a year -
thousands over a life time. I've never been bitten by a bat - and have seen
many. My animals have not been bitten by them either.



Well OF COURSE there is a SLIGHTLY larger chance of being bit by a mosquito!
But if you would read what I wrote instead of putting words into my mouth...I
never mentioned the *chance of getting bit*. As you yourself note, you can get
hundreds of mosquito bites and yet never contract west nile.


http://www.cdc.gov/ncidod/EID/vol9no2/02-0083.htm
excerpt:"Bites by rabid dogs are the source of 35,000-50,000 human rabies deaths
each year globally, yet most human rabies deaths in the United States are
attributed to unrecognized exposures to rabid bats."

Emergence of Bat-associated Rabies in Humans in the United States:
http://www.cdc.gov/ncidod/emergplan/box09.htm

http://www.emedicine.com/ped/byname/rabies.htm


BT




Of course we could instead spray all the swampland with larvacide and spray
the bush with DEET.
Personally if between bats and martens and swallows and dragonflies, not to
mention other mosquito predators, we even decrease the mosquito population
around myself by 5% - I will be happier than spraying or destroying wetlands
as a control!!!
BTW all of the research that I have so far seen on bats or martens not being
a good control are minimal and not enought to draw a final conclusion on!
The studies will certainly be flying now so we shall see results in the next
5 yrs.



"BT" wrote in message
...
What a great idea! Exchange the chance of getting west nile with the

chance of
catching rabies! Boy aren't politicians clever!
http://tinyurl.com/tddo

Just breed dragonflies...they are the ones eating all the mosquitoes!

BT


"JNJ" wrote in message
...
(This I have to admit is surprisingly pleasant to hear when considering

just
how bass ackwards most people here are. Hopefully they DO realize the

bats
are migrating OUT of the area for the cold season. JNJ)

************************************************** **************
Bats Brought In To Battle Mosquitos
LAST UPDATE: 10/31/2003 10:51:04 PM

The Anderson Park District is taking unusual measures in the fight

against
West Nile. It is bringing in bats, in hopes the winged creatures will

gobble
up mosquitos, which are known to carry the virus. This comes after a
mosquito with West Nile was found over the summer in Kellogg Park,

leading
the District to cancel their Haunted Hike this year.

Puddles in the park were treated with chemical dunks to kill larvae, and
mosquito magnets were also used to get rid of the adult insects. Seven

bat
houses, made by local boy scouts, have been put up in the park. Each one
housing 30 bats, of 11 different species. Park District officials say if

the
experiment works, more bat houses will be put up in other parks next

fall.

One bat can eat 500 of the insects in just one hour. But there's no need

to
be afraid. Park officials say that bats' reputation of sucking blood and
flying into human hair are simply myths. They only fly close to people

if
their exceptional radar and hearing show a bug nearby to eat.





  #13   Report Post  
Old 03-11-2003, 01:42 AM
animaux
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

Gone to hide in the bush for the night? Most moths are night flying insects.
I'm happy your area is trying to use ecology for a situation, but it serves no
purpose to give misinformation. Bats do NOT eat mosquitoes out of the air like
that. Not at the rate you seem to think.

The bats which night roost on our property are continuously eating moths, and
beetles by the street light. I watch them nightly. Many bats have not left the
area for their migration to Mexico. Many of the males stay all winter. Bats do
most of their eating at very high elevations...where it would be rare to find a
mosquito.


On Sun, 02 Nov 2003 21:45:05 GMT, "Tina Gibson" opined:

Here we are trying to encourage all of these things but bats as well. I love
them - they come out a dusk when the birds are settling down and you can
watch them swooping around eating the mosquitos!! You know it's mosquitos
or the occasional moth depending on the time of year, because most of the
other flying insects are gone to hide in the bush for the night. The

"David Hill" wrote in message
...
I would have thought that trying to encourage Swallows , Swifts and House
Martins would be of more use.

--
David Hill
Abacus nurseries
www.abacus-nurseries.co.uk





  #14   Report Post  
Old 03-11-2003, 01:42 AM
animaux
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

There have been 10 confirmed cases of rabies due to some idiot picking up a sick
bat in about a hundred years in the United States.

On Sun, 2 Nov 2003 16:45:34 -0500, "BT" opined:

What a great idea! Exchange the chance of getting west nile with the chance of
catching rabies! Boy aren't politicians clever!
http://tinyurl.com/tddo

Just breed dragonflies...they are the ones eating all the mosquitoes!

BT


"JNJ" wrote in message
.. .
(This I have to admit is surprisingly pleasant to hear when considering just
how bass ackwards most people here are. Hopefully they DO realize the bats
are migrating OUT of the area for the cold season. JNJ)

************************************************** **************
Bats Brought In To Battle Mosquitos
LAST UPDATE: 10/31/2003 10:51:04 PM

The Anderson Park District is taking unusual measures in the fight against
West Nile. It is bringing in bats, in hopes the winged creatures will gobble
up mosquitos, which are known to carry the virus. This comes after a
mosquito with West Nile was found over the summer in Kellogg Park, leading
the District to cancel their Haunted Hike this year.

Puddles in the park were treated with chemical dunks to kill larvae, and
mosquito magnets were also used to get rid of the adult insects. Seven bat
houses, made by local boy scouts, have been put up in the park. Each one
housing 30 bats, of 11 different species. Park District officials say if the
experiment works, more bat houses will be put up in other parks next fall.

One bat can eat 500 of the insects in just one hour. But there's no need to
be afraid. Park officials say that bats' reputation of sucking blood and
flying into human hair are simply myths. They only fly close to people if
their exceptional radar and hearing show a bug nearby to eat.




  #15   Report Post  
Old 03-11-2003, 02:02 AM
animaux
 
Posts: n/a
Default Bats Brought In To Battle Mosquitos

On Sun, 02 Nov 2003 21:53:09 GMT, "Tina Gibson" opined:

Did you actually read the info on the site? And I have 90 acres of property
with a beaver pond and swamp area - I am not going to control the mosquito
larvae in those areas. I am not talking about city populations of bats dear.


Dear, this is the largest (did you read that part) largest population of bats in
an urban setting, directly above the water, under a bridge, in the WORLD. There
are millions and millions of bats in this part of Texas. If you want to call
Austin a city, fine. Obviously you've never been here.

I am talking about natural forested areas - or what is left of them. If a
National Park wants to increase the population of bats, martens or swallows
what is the big deal to you?


It's no big deal to me. It is misleading to think bats, swallows, martins or
anything like it will lower the mosquito rate, because it is misinformation.

Are you an ecologist specialising in Bats? or mosquito populations? On what
basis are you refuting this? The site you posted only spoke of Mexican bats
that inhabit southern areas. Do you have other published references that
have disproven bat population density has no affect on mosquito populations?


Taken from http://www.mosquito.org/info.php

Mosquito Control

Mosquito control can be divided into two areas of responsibility: individual and
public. Most often it's performed following the Integrated Mosquito Management
(IMM) concept. IMM is based on ecological, economic and social criteria and
integrates multidisciplinary methodologies into pest management strategies that
are practical and effective to protect public health and the environment and
improve the quality of life. IMM strategies are employed in concert with
insecticide. These include source reduction, which incorporates physical control
(digging ditches and ponds in the target marsh) and biological control [placing
live mosquito fish ( Gambusia ) in the ditches and ponds to eat mosquito
larvae]. Other non-chemical control methods include invertebrate predators,
parasites and diseases to control mosquito larvae. Adult mosquito biological
control by means of birds, bats, dragonflies and frogs has been employed by
various agencies. However, supportive data is anecdotal and there is no
documented study to show that bats, purple martins, or other predators consume
enough adult mosquitoes to be effective control agents.

And yes, I am quite well read about bats, I'm a Master Naturalist and live in a
state in the US which has more bats than anywhere else in the country. Not just
the state, I live two miles east of one of the largest colonies known in the US.

But, hey, continue to delude.
Reply
Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules

Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are On
Pingbacks are On
Refbacks are On


Similar Threads
Thread Thread Starter Forum Replies Last Post
Help! What are black spots on gf brought in from pond? Karen Ponds 7 13-11-2004 07:52 PM
C. Myrtles in containers brought indoors Wishy13764 Gardening 3 27-10-2004 02:50 AM
Lightning Strike OT? WTH brought this on? Just Me \Koi\ Ponds 4 31-07-2003 12:32 AM
Brought to You by Merrill Lynch... Andy United Kingdom 2 22-05-2003 09:20 PM


All times are GMT +1. The time now is 11:13 AM.

Powered by vBulletin® Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright ©2004-2024 GardenBanter.co.uk.
The comments are property of their posters.
 

About Us

"It's about Gardening"

 

Copyright © 2017